Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Evol ; 89(8): 576-587, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34392385

RESUMO

Proteinaceous pheromones that diversify through gene duplication can result in shifts in courtship cocktails that may serve as a mechanism for reproductive isolation. The molecular evolution of pheromones has been extensively studied in salamanders, but how these genes and associated novel courtship glands have codiversified has not been evaluated. In this study we used transcriptional analyses to examine the relationship between pheromone diversification and gland type in three divergent lineages of plethodontid salamanders. Our results revealed that plethodontid salamanders express up to eight divergent Sodefrin Precursor-like Factor genes (spf, representing both alpha and beta subfamilies) along with Plethodontid Modulating Factor (pmf) and Plethodontid Receptivity Factor (prf). Expression of pheromone genes is tissue specific with pmf, prf, and some spf genes restricted to the mental gland. In contrast, the caudal gland shows strong expression of the other spf genes. We found evidence for punctuated changes in pheromone cocktail composition related to the loss of metamorphosis, and subsequent extreme reduction of the mental gland, in a paedomorphic lineage. Our study provides insight into how pheromone diversification can be partitioned into unique glands, which may lead to cocktail specificity in behavioral modules during courtship.


Assuntos
Feromônios , Urodelos , Animais , Corte , Evolução Molecular , Proteínas , Urodelos/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-24468740

RESUMO

Tadpoles of the tropical bicolored frog, Clinotarsus curtipes are unique in having parotoid glands secreting a white viscous fluid and are structurally similar to granular glands from other amphibians. To ascertain the involvement of these glands and their secretion in predator deterrence, it was tested against a predatory fish, Clarias gariepinus, using a paired choice behavioral assay. The results showed that the fish avoid eating C. curtipes tadpoles when paired with tadpoles of a sympatric species, Sylvirana temporalis. While the fish fed on C. curtipes tadpoles whose parotoid glands were surgically removed, did not touch those with intact glands, suggesting a role for the parotoid gland secretion in predator deterrence. Histochemical and biochemical analyses of the gland secretion revealed the presence of high concentrations of proteins, lipids, and alkaloids. SDS-PAGE showed the presence of proteins with prominent bands at 17 and 50kDa. The presence of other small molecules (950-2000amu) as detected by LC-MS showed the presence of five major peaks. Peaks 1 and 2 are probably tetrodotoxin and/or its analogs. Peaks 3 and 5 are possibly bufalin and argininosuccinic acid, respectively while peak 4 remains unidentified. Thus, secretion of parotoid glands of larval C. curtipes contains chemicals which, either alone or in combination, might be responsible for deterring predators.


Assuntos
Larva/fisiologia , Glândula Parótida/metabolismo , Ranidae/fisiologia , Animais , Cadeia Alimentar , Glândula Parótida/crescimento & desenvolvimento , Comportamento Predatório/efeitos dos fármacos
3.
J Nematol ; 29(2): 133-43, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19274142

RESUMO

Observations are reported on the ultrastructure of the buccal cavity, body cuticle, spermatids, spermatozoa, male genitalia, and caudal glands of Gonionchus australis. The buccal cuticle is a continuation of the pharyngeal cuticle. Anteriorly it is secreted by arcade tissue and overlaps the mouth rim; laterally it forms longitudinal tooth ridges. The non-annulated cephalic cuticle differs sharply from the remainder of the body wall cuticle. The cortical and basal zones become much thinner, while a largely structureless, lucent median zone expands to fill the bulk of the lips and lip flaps. Spermatids possess fibrous bodies, multimembrane organelles, mitochondria, and compact chromatin. The spermatozoa of G. australis resemble those of most other nematodes by the absence of the nuclear envelope and presence of fibrous bodies, mitochondria, and compact chromafin. The ejaculatory duct possesses microvilli. Two ejaculatory glands lie beside the duct. Two neurons are located within each spicule and each part of the paired gubernaculum. Caudal gland nuclei are large, with dispersed chromatin. The ducts of all three caudal glands are filled with secretory vesicles.

4.
J Nematol ; 28(3): 318-27, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19277149

RESUMO

Ultrastructure of the renette cell and caudal glands was studied in the free-living aquatic nematode Sphaerolaimus gracilis. The renette cell occurred posterior to the esophageal-intestinal junction and opened through an ampulla to a ventral pore behind the nerve ring. The caudal gland system of the tail consisted of two gland cells opening through separate pores and 2 to 3 other gland cells of a different type opening through a common pore. The renette cell and the two caudal gland cells were similar and both contained secretory granules, 0.5-1.5 mum in diameter. The material released attached the nematode to the substrate. The renette ampulla was surrounded by a specialized cell, the ampulla cell, which had characteristics of myoepithelium. A plug or valve structure connected to the ampulla cell may regulate the output of the secretory material. The ampulla cell is able to contract and thus is probably under direct neuronal control. Other cells in the renette ampulla region of body cavity were termed supporting cells. Living, cold-relaxed nematodes were attached to sediment particles in the renette pore region and at the tail tip. Release from sediment particles was mechanical at the renette cell discharge site but appeared to be chemical at the caudal gland. In behavioral experiments, nematodes in a water current had the ability to release a thread from the caudal glands while maintaining contact with a sediment particle attached to the tail end. If the thread was strong enough, it also could be used to change location. Nematodes anchored by the thread from the caudal glands to a sediment particle could float in water currents until they attached themselves to another sediment particle with the help of secretions from the renette cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA