Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Circulation ; 148(8): 679-694, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37603604

RESUMO

The number of heart transplants performed annually in the United States and worldwide continues to increase, but there has been little change in graft longevity and patient survival over the past 2 decades. The reference standard for diagnosis of acute cellular and antibody-mediated rejection includes histologic and immunofluorescence evaluation of endomyocardial biopsy samples, despite invasiveness and high interrater variability for grading histologic rejection. Circulating biomarkers and molecular diagnostics have shown substantial predictive value in rejection monitoring, and emerging data support their use in diagnosing other posttransplant complications. The use of genomic (cell-free DNA), transcriptomic (mRNA and microRNA profiling), and proteomic (protein expression quantitation) methodologies in diagnosis of these posttransplant outcomes has been evaluated with varying levels of evidence. In parallel, growing knowledge about the genetically mediated immune response leading to rejection (immunogenetics) has enhanced understanding of antibody-mediated rejection, associated graft dysfunction, and death. Antibodies to donor human leukocyte antigens and the technology available to evaluate these antibodies continues to evolve. This review aims to provide an overview of biomarker and immunologic tests used to diagnose posttransplant complications. This includes a discussion of pediatric heart transplantation and the disparate rates of rejection and death experienced by Black patients receiving a heart transplant. This review describes diagnostic modalities that are available and used after transplant and the landscape of future investigations needed to enhance patient outcomes after heart transplantation.


Assuntos
Transplante de Coração , Patologia Molecular , Humanos , Criança , Proteômica , Transplante de Coração/efeitos adversos , Anticorpos , Biópsia
2.
Int J Cancer ; 155(5): 946-956, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733362

RESUMO

Endometrial cancer (EC) is one of the most common female cancers and there is currently no routine screening strategy for early detection. An altered abundance of circulating microRNAs (miRNAs) and other RNA classes have the potential as early cancer biomarkers. We analyzed circulating RNA levels using small RNA sequencing, targeting RNAs in the size range of 17-47 nucleotides, in EC patients with samples collected prior to diagnosis compared to cancer-free controls. The analysis included 316 cases with samples collected 1-11 years prior to EC diagnosis, and 316 matched controls, both from the Janus Serum Bank cohort in Norway. We identified differentially abundant (DA) miRNAs, isomiRs, and small nuclear RNAs between EC cases and controls. The top EC DA miRNAs were miR-155-5p, miR-200b-3p, miR-589-5p, miR-151a-5p, miR-543, miR-485-5p, miR-625-p, and miR-671-3p. miR-200b-3p was previously reported to be among one of the top miRNAs with higher abundance in EC cases. We observed 47, 41, and 32 DA miRNAs for EC interacting with BMI, smoking status, and physical activity, respectively, including two miRNAs (miR-223-3p and miR-29b-3p) interacting with all three factors. The circulating RNAs are altered and show temporal dynamics prior to EC diagnosis. Notably, DA miRNAs for EC had the lowest q-value 4.39-6.66 years before diagnosis. Enrichment analysis of miRNAs showed that signaling pathways Fc epsilon RI, prolactin, toll-like receptor, and VEGF had the strongest associations.


Assuntos
Biomarcadores Tumorais , Neoplasias do Endométrio , Humanos , Feminino , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Idoso , MicroRNA Circulante/sangue , Estudos de Casos e Controles , MicroRNAs/sangue , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Noruega/epidemiologia , Adulto
3.
Curr Hypertens Rep ; 26(4): 175-182, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38147201

RESUMO

PURPOSE OF REVIEW: This review summarizes the potential of cell-free nucleic acids for predicting preeclampsia, contrasts them with other methods, and discusses these findings' relevance to preeclampsia's pathogenesis and care. RECENT FINDINGS: Recent studies have demonstrated the utility of cell-free nucleic acids in early preeclampsia risk prediction. Encouragingly, nucleic acid measurement exhibits similar or better sensitivity as compared to standard screening assays and furthermore sheds light on preeclampsia's underlying placental biology. Over the past decade, liquid biopsies measuring cell-free nucleic acids have found diverse applications, including in prenatal care. Recent advances have extended their utility to predict preeclampsia, a major cause of maternal mortality. These assays assess methylation patterns in cell-free DNA (cfDNA) or gene levels in cell-free RNA (cfRNA). Currently, preeclampsia care focuses on blood pressure control, seizure prevention, and delivery. If validated, early prediction of preeclampsia through liquid biopsies can improve maternal health and deepen our understanding of its causes.


Assuntos
Ácidos Nucleicos Livres , Hipertensão , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Ácidos Nucleicos Livres/genética , Placenta , Pressão Sanguínea
4.
J Pathol ; 261(3): 286-297, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615198

RESUMO

Circulating tumor DNA (ctDNA) holds promise in resectable esophageal adenocarcinoma (EAC) to predict patient outcome but is not yet sensitive enough to be clinically applicable. Our aim was to combine ctDNA mutation data with shallow whole-genome sequencing (sWGS)-derived copy number tumor fraction estimates (ichorCNA) to improve pathological response and survival prediction in EAC. In total, 111 stage II/III EAC patients with baseline (n = 111), post-neoadjuvant chemoradiotherapy (nCRT) (n = 68), and pre-surgery (n = 92) plasma samples were used for ctDNA characterization. sWGS (<5× coverage) was performed on all time-point samples, and copy number aberrations were estimated using ichorCNA. Baseline and pre-surgery samples were sequenced using a custom amplicon panel for mutation detection. Detection of baseline ctDNA was successful in 44.3% of patients by amplicon sequencing and 10.5% by ichorCNA. Combining both, ctDNA could be detected in 50.5% of patients. Baseline ctDNA positivity was related to higher T stage (cT3, 4) (p = 0.017). There was no relationship between pathological response and baseline ctDNA positivity. However, baseline ctDNA metrics (variant allele frequency > 1% or ichorCNA > 3%) were associated with a high risk of disease progression [HR = 2.23 (95% CI 1.22-4.07), p = 0.007]. The non-clearance of a baseline variant or ichorCNA > 3% in pre-surgery samples was related to early progression [HR = 4.58 (95% CI 2.22-9.46), p < 0.001]. Multi-signal analysis improves detection of ctDNA and can be used for prognostication of resectable EAC patients. Future studies should explore the potential of multi-modality sequencing for risk stratification and treatment adaptation based on ctDNA results. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Adenocarcinoma , Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Esofágicas , Humanos , Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/genética , Adenocarcinoma/genética , Adenocarcinoma/terapia , Adenocarcinoma/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Biomarcadores Tumorais/genética , Mutação
5.
Mol Biol Rep ; 51(1): 174, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252353

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) is a source for liquid biopsy used for cancer diagnosis, therapy selection, and disease monitoring due to its non-invasive nature and ease of extraction. However, cfDNA also participates in cancer development and progression by horizontal transfer. In humans, cfDNA circulates complexed with extracellular vesicles (EV) and macromolecular complexes such as nucleosomes, lipids, and serum proteins. The present study aimed to demonstrate whether cfDNA not associated with EV induces cell transformation and tumorigenesis. METHODS: Supernatant of the SW480 human colon cancer cell line was processed by ultracentrifugation to obtain a soluble fraction (SF) and a fraction associated with EV (EVF). Primary murine embryonic fibroblast cells (NIH3T3) underwent passive transfection with these fractions, and cell proliferation, cell cycle, apoptosis, cell transformation, and tumorigenic assays were performed. Next, cfDNA was analyzed by electronic microscopy, and horizontal transfer was assessed by human mutant KRAS in recipient cells via PCR and recipient cell internalization via fluorescence microscopy. RESULTS: The results showed that the SF but not the EVF of cfDNA induced proliferative and antiapoptotic effects, cell transformation, and tumorigenesis in nude mice, which were reduced by digestion with DNAse I and proteinase K. These effects were associated with horizontal DNA transfer and cfDNA internalization into recipient cells. CONCLUSIONS: The results suggest pro-tumorigenic effects of cfDNA in the SF that can be offset by enzyme treatment. Further exploration of the horizontal tumor progression phenomenon mediated by cfDNA is needed to determine whether its manipulation may play a role in cancer therapy.


Assuntos
Ácidos Nucleicos Livres , Humanos , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Camundongos Nus , Células NIH 3T3 , Carcinogênese , DNA
6.
J Oral Pathol Med ; 53(4): 258-265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494749

RESUMO

BACKGROUND: The objective of this study is to evaluate the diagnostic accuracy of plasma-based liquid biopsy for the detection of the BRAF V600E mutation in circulating cell-free DNA from patients with ameloblastoma. METHODS: This is a prospective diagnostic accuracy study conducted based on the Standards for Reporting Diagnostic Accuracy recommendations. The index test was the plasma-based liquid biopsy, whereas the reference standard was the conventional tissue biopsy. The target condition was the detection of BRAF V600E mutation. The study population consisted of individuals with ameloblastoma recruited from three tertiary hospitals from Brazil. A negative control group composed of three individuals with confirmed wild-type BRAF lesions were included. The participants underwent plasma circulating cell-free DNA and tumor tissue DNA isolation, and both were submitted to using competitive allele-specific TaqMan™ real-time polymerase chain reaction technology mutation detection assays. Sensitivity and specificity measures and positive and negative predictive values were calculated. RESULTS: Twelve patients with conventional ameloblastoma were included. BRAF V600E mutation was detected in 11/12 (91.66%) ameloblastoma tissue samples. However, the mutation was not detected in any of the plasma-based liquid biopsy circulating cell-free DNA samples in both ameloblastomas and negative control group. The sensitivity and specificity of plasma-based liquid biopsy for the detection of the BRAF V600E mutation in circulating cell-free DNA was 0.0 and 1.0, respectively. The agreement between index test and reference standard results was 26.66%. CONCLUSION: Plasma-based liquid biopsy does not seem to be an accurate method for the detection of the BRAF V600E mutation in circulating circulating cell-free DNA from patients with ameloblastoma, regardless of tumor size, anatomic location, recurrence status, and other clinicopathological features.


Assuntos
Ameloblastoma , Ácidos Nucleicos Livres , Humanos , Ameloblastoma/diagnóstico , Ameloblastoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Prospectivos , Mutação , Ácidos Nucleicos Livres/genética
7.
J Obstet Gynaecol Can ; : 102694, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39419445

RESUMO

OBJECTIVE: To review the available prenatal aneuploidy screening options and to provide updated clinical guidelines for reproductive care providers. TARGET POPULATION: All pregnant persons receiving counselling and providing informed consent for prenatal screening. BENEFITS, HARMS, AND COSTS: Implementation of the recommendations in this guideline should increase clinician competency to offer counselling for prenatal screening options and provide appropriate interventions. Given the variety of available options for prenatal screening with different performance, cost, and availability across Canada, appropriate counselling is of paramount importance to offer the best individual choice to Canadian pregnant persons. Prenatal screening may cause anxiety, and the decisions about prenatal diagnostic procedures are complex given the potential risk of fetal loss. EVIDENCE: Published literature was retrieved through searches of Medline, PubMed, and the Cochrane Library in and prior to July 2023, using an appropriate controlled vocabulary (prenatal diagnosis, amniocentesis, chorionic villi sampling, non-invasive prenatal screening) and key words (prenatal screening, prenatal genetic counselling). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies written in English and published from January 1995 to July 2023. VALIDATION METHODS: The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See Appendix A (Tables A1 for definitions and A2 for interpretations). INTENDED AUDIENCE: Health care providers involved in prenatal screening, including general practitioners, obstetricians, midwives, maternal-fetal medicine specialists, geneticists, and radiologists. SOCIAL MEDIA ABSTRACT: Non-invasive prenatal screening is the most accurate method for detecting major aneuploidies. It is not universally available in the public health system and has some limitations. SUMMARY STATEMENTS: RECOMMENDATIONS.

8.
J Res Med Sci ; 29: 8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524748

RESUMO

Background: Myocardial infarction (MI) can lead to higher cellular damage, making cell-free DNA (cfDNA) a potential biomarker for assessing disease severity. The aim of this study is to evaluate survival predictions using cfDNA measurements and assess its correlation with MI. Materials and Methods: A direct fluorescence assay was employed to measure cfDNA content in the blood samples of participants. The inclusion criteria included patients who gave informed consent, suffering from ST-elevation myocardial infraction (STEMI) based on established diagnostic criteria (joint ESC/ACC guidelines), between the age of 18 and 80 years old, and had elevated troponin biomarker levels. The study included 150 patients diagnosed with STEMI and 50 healthy volunteers as controls. Serial monitoring of patients was conducted to track their postdisease status. The rate of change of cfDNA was calculated and daily measurements for 7 days were recorded. Results: Mean levels of cfDNA were found to be 5.93 times higher in patients with STEMI compared to healthy controls, providing clear evidence of a clinical correlation between cfDNA and STEMI. Patients were further categorized based on their survival status within a 90-day period. The study observed a strong predictive relationship between the rate of change of cfDNA during daily measurements and survival outcomes. To assess its predictive capability, a receiver operating characteristics (ROC) curve analysis was performed. The ROC analysis identified an optimal cutoff value of 2.50 for cfDNA, with a sensitivity of 81.5% and specificity of 74.0% in predicting disease outcomes. Conclusion: This study demonstrates a robust association between cfDNA and STEMI, indicating that cfDNA levels can be a valuable early prognostic factor for patients. Serial measurements of cfDNA during early disease onset hold promise as an effective approach for predicting survival outcomes in MI patients.

9.
Circulation ; 146(14): 1033-1045, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004627

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) is a noninvasive marker of cellular injury. Its significance in pulmonary arterial hypertension (PAH) is unknown. METHODS: Plasma cfDNA was measured in 2 PAH cohorts (A, n=48; B, n=161) and controls (n=48). Data were collected for REVEAL 2.0 (Registry to Evaluate Early and Long-Term PAH Disease Management) scores and outcome determinations. Patients were divided into the following REVEAL risk groups: low (≤6), medium (7-8), and high (≥9). Total cfDNA concentrations were compared among controls and PAH risk groups by 1-way analysis of variance. Log-rank tests compared survival between cfDNA tertiles and REVEAL risk groups. Areas under the receiver operating characteristic curve were estimated from logistic regression models. A sample subset from cohort B (n=96) and controls (n=16) underwent bisulfite sequencing followed by a deconvolution algorithm to map cell-specific cfDNA methylation patterns, with concentrations compared using t tests. RESULTS: In cohort A, median (interquartile range) age was 62 years (47-71), with 75% female, and median (interquartile range) REVEAL 2.0 was 6 (4-9). In cohort B, median (interquartile range) age was 59 years (49-71), with 69% female, and median (interquartile range) REVEAL 2.0 was 7 (6-9). In both cohorts, cfDNA concentrations differed among patients with PAH of varying REVEAL risk and controls (analysis of variance P≤0.002) and were greater in the high-risk compared with the low-risk category (P≤0.002). In cohort B, death or lung transplant occurred in 14 of 54, 23 of 53, and 35 of 54 patients in the lowest, middle, and highest cfDNA tertiles, respectively. cfDNA levels stratified as tertiles (log-rank: P=0.0001) and REVEAL risk groups (log-rank: P<0.0001) each predicted transplant-free survival. The addition of cfDNA to REVEAL improved discrimination (area under the receiver operating characteristic curve, 0.72-0.78; P=0.02). Compared with controls, methylation analysis in patients with PAH revealed increased cfDNA originating from erythrocyte progenitors, neutrophils, monocytes, adipocytes, natural killer cells, vascular endothelium, and cardiac myocytes (Bonferroni adjusted P<0.05). cfDNA concentrations derived from erythrocyte progenitor cells, cardiac myocytes, and vascular endothelium were greater in patients with PAH with high-risk versus low-risk REVEAL scores (P≤0.02). CONCLUSIONS: Circulating cfDNA is elevated in patients with PAH, correlates with disease severity, and predicts worse survival. Results from cfDNA methylation analyses in patients with PAH are consistent with prevailing paradigms of disease pathogenesis.


Assuntos
Ácidos Nucleicos Livres , Hipertensão Arterial Pulmonar , Idoso , Biomarcadores , Ácidos Nucleicos Livres/genética , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Curva ROC
10.
Gynecol Oncol ; 174: 11-20, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141817

RESUMO

OBJECTIVE: Alterations in DNA methylation are early events in endometrial cancer (EC) development and may have utility in EC detection via tampon-collected vaginal fluid. METHODS: For discovery, DNA from frozen EC, benign endometrium (BE), and benign cervicovaginal (BCV) tissues underwent reduced representation bisulfite sequencing (RRBS) to identify differentially methylated regions (DMRs). Candidate DMRs were selected based on receiver operating characteristic (ROC) discrimination, methylation level fold-change between cancers and controls, and absence of background CpG methylation. Methylated DNA marker (MDM) validation was performed using qMSP on DNA from independent EC and BE FFPE tissue sets. Women ≥45 years of age with abnormal uterine bleeding (AUB) or postmenopausal bleeding (PMB) or any age with biopsy-proven EC self-collected vaginal fluid using a tampon prior to clinically indicated endometrial sampling or hysterectomy. Vaginal fluid DNA was assayed by qMSP for EC-associated MDMs. Random forest modeling analysis was performed to generate predictive probability of underlying disease; results were 500-fold in-silico cross-validated. RESULTS: Thirty-three candidate MDMs met performance criteria in tissue. For the tampon pilot, 100 EC cases were frequency matched by menopausal status and tampon collection date to 92 BE controls. A 28-MDM panel highly discriminated between EC and BE (96% (95%CI 89-99%) specificity; 76% (66-84%) sensitivity (AUC 0.88). In PBS/EDTA tampon buffer, the panel yielded 96% (95% CI 87-99%) specificity and 82% (70-91%) sensitivity (AUC 0.91). CONCLUSION: Next generation methylome sequencing, stringent filtering criteria, and independent validation yielded excellent candidate MDMs for EC. EC-associated MDMs performed with promisingly high sensitivity and specificity in tampon-collected vaginal fluid; PBS-based tampon buffer with added EDTA improved sensitivity. Larger tampon-based EC MDM testing studies are warranted.


Assuntos
Neoplasias do Endométrio , Humanos , Feminino , Marcadores Genéticos , Ácido Edético/metabolismo , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Endométrio/metabolismo , DNA , Metilação de DNA
11.
Mol Biol Rep ; 50(2): 1895-1912, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36520359

RESUMO

Neuroblastomas, the most prevalent malignant solid neoplasms of childhood, originate from progenitor cells of the sympathetic nervous system. Their genetic causation is diverse and involves multiple molecular mechanisms. This review highlights multiple roles of microRNA in neuroblastoma pathogenesis and discusses the prospects of harnessing these important natural regulator molecules as biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma.


Assuntos
MicroRNAs , Neuroblastoma , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Biomarcadores , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Preparações Farmacêuticas , Regulação Neoplásica da Expressão Gênica
12.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675313

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer due to its molecular heterogeneity and poor clinical outcomes. Analysis of circulating cell-free tumor nucleic acids (ctNAs) can improve our understanding of TNBC and provide efficient and non-invasive clinical biomarkers that may be representative of tumor heterogeneity. In this review, we summarize the potential of ctNAs to aid TNBC diagnosis and prognosis. For example, tumor fraction of circulating cell-free DNA (TFx) may be useful for molecular prognosis of TNBC: high TFx levels after neoadjuvant chemotherapy have been associated with shorter progression-free survival and relapse-free survival. Mutations and copy number variations of TP53 and PIK3CA/AKT genes in plasma may be important markers of TNBC onset, progression, metastasis, and for clinical follow-up. In contrast, the expression profile of circulating cell-free tumor non-coding RNAs (ctncRNAs) can be predictive of molecular subtypes of breast cancer and thus aid in the identification of TBNC. Finally, dysregulation of some circulating cell-free tumor miRNAs (miR17, miR19a, miR19b, miR25, miR93, miR105, miR199a) may have a predictive value for chemotherapy resistance. In conclusion, a growing number of efforts are highlighting the potential of ctNAs for future clinical applications in the diagnosis, prognosis, and follow-up of TNBC.


Assuntos
Ácidos Nucleicos Livres , MicroRNA Circulante , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia , MicroRNAs/genética , MicroRNA Circulante/uso terapêutico
13.
Mol Cancer ; 21(1): 95, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379239

RESUMO

Breast cancer continues to be a major global problem with significant mortality associated with advanced stage and metastases at clinical presentation. However, several findings suggest that metastasis is indeed an early occurrence. The standard diagnostic techniques such as invasive core needle biopsy, serological protein marker assays, and non-invasive radiological imaging do not provide information about the presence and molecular profile of small fractions of early metastatic tumor cells which are prematurely dispersed in the circulatory system. These circulating tumor cells (CTCs) diverge from the primary tumors as clusters with a defined secretome comprised of circulating cell-free nucleic acids and small microRNAs (miRNAs). These circulatory biomarkers provide a blueprint of the mutational profile of the tumor burden and tumor associated alterations in the molecular signaling pathways involved in oncogenesis. Amidst the multitude of circulatory biomarkers, miRNAs serve as relatively stable and precise biomarkers in the blood for the early detection of CTCs, and promote step-wise disease progression by executing paracrine signaling that transforms the microenvironment to guide the metastatic CTCs to anchor at a conducive new organ. Random sampling of easily accessible patient blood or its serum/plasma derivatives and other bodily fluids collectively known as liquid biopsy (LB), forms an efficient alternative to tissue biopsies. In this review, we discuss in detail the divergence of early metastases as CTCs and the involvement of miRNAs as detectable blood-based diagnostic biomarkers that warrant a timely screening of cancer, serial monitoring of therapeutic response, and the dynamic molecular adaptations induced by miRNAs on CTCs in guiding primary and second-line systemic therapy.


Assuntos
Neoplasias da Mama , MicroRNAs , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Biópsia Líquida , MicroRNAs/genética , Células Neoplásicas Circulantes/patologia , Microambiente Tumoral
14.
IUBMB Life ; 74(9): 866-879, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35580148

RESUMO

Serum albumin (SA) is the most abundant protein in plasma and represents the main carrier of endogenous and exogenous compounds. Several evidence supports the notion that SA binds single and double-stranded deoxynucleotides and ribonucleotides at two sites, with values of the dissociation equilibrium constant (i.e., Kd ) ranging from micromolar to nanomolar values. This can be relevant from a physiological and pathological point of view, as in human plasma circulates cell-free nucleic acids (cfNAs), released by different tissues via apoptosis, necrosis, and secretions, circulates as single and double-stranded NAs. Albeit SA shows low hydrolytic reactivity toward DNA and RNA, the high plasma concentration of this protein and the occurrence of several SA receptors may be pivotal for sequestering and hydrolyzing cfNAs. Therefore, pathological conditions like cancer, characterized by altered levels of human SA or by altered SA post-translational modifications, may influence cfNAs distribution and metabolism. Besides, the stability, solubility, biocompatibility, and low immunogenicity make SA a golden share for biotechnological applications related to the delivery of therapeutic NAs (TNAs). Indeed, pre-clinical studies report the therapeutic potential of SA:TNAs complexes in precision cancer therapy. Here, the molecular and biotechnological implications of SA:NAs interaction are discussed, highlighting new perspectives on SA plasmatic functions.


Assuntos
Ácidos Nucleicos Livres , Ácidos Nucleicos , DNA/metabolismo , Humanos , Ácidos Nucleicos/metabolismo , Albumina Sérica/metabolismo , Distribuição Tecidual
15.
Cancer Cell Int ; 22(1): 82, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168603

RESUMO

BACKGROUND: Approximately 50%-60% of secondary resistance to primary EGFR- tyrosine kinase inhibitors (TKI) therapy is caused by acquired p.Thr790Met (T790M) mutation; however, highly fragmented, low-quantity circulating tumor DNA is an obstacle for detecting mutations. Therefore, more sensitive mutation detection techniques are required. Here, we report a new mutant enrichment technology, the CRISPR system combined with post-polymerase chain reaction (PCR) cell-free DNA (cfDNA) (CRISPR-CPPC) to detect the T790M mutation using droplet digital PCR (ddPCR) from cfDNA. METHODS: The CRISPR-CPPC process comprises the following three steps: (1) cfDNA PCR, (2) assembly of post-PCR cfDNA and CRISPR/CRISPR associated protein 9 complex, and (3) enrichment of the target DNA template. After CRISPR-CPPC, the target DNA was detected using ddPCR. We optimized and validated CRISPR-CPPC using reference cfDNA standards and cfDNA from patients with non-small cell lung cancer who underwent TKI therapy. We then compared the detection sensitivity of CRISPR-CPPC assay with the results of real-time PCR and those of ddPCR. RESULTS: CRISPR-CPPC aided detection of T790M with 93.9% sensitivity and 100% specificity. T790M mutant copies were sensitively detected achieving an approximately 13-fold increase in the detected allele frequency. Furthermore, positive rate of detecting a low T790M copy number (< 10 copies/mL) were 93.8% (15/16) and 43.8% (7/16) for CRISPR-CPPC assay and ddPCR, respectively. CONCLUSIONS: CRISPR-CPPC is a useful mutant enrichment tool for the sensitive detection of target mutation. When tested in patients with progressive disease, the diagnostic performance of CRISPR-CPPC assay is exceptionally better than that of any other currently available methods.

16.
Gynecol Oncol ; 165(3): 568-576, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35370009

RESUMO

OBJECTIVE: Aberrant DNA methylation is an early event in carcinogenesis which could be leveraged to detect ovarian cancer (OC) in plasma. METHODS: DNA from frozen OC tissues, benign fallopian tube epithelium (FTE), and buffy coats from cancer-free women underwent reduced representation bisulfite sequencing (RRBS) to identify OC MDMs. Candidate MDM selection was based on receiver operating characteristic (ROC) discrimination, methylation fold change, and low background methylation among controls. Blinded biological validation was performed using methylated specific PCR on DNA extracted from independent OC and FTE FFPE tissues. MDMs were tested using Target Enrichment Long-probe Quantitative Amplified Signal (TELQAS) assays in pre-treatment plasma from women newly diagnosed with OC and population-sampled healthy women. A random forest modeling analysis was performed to generate predictive probability of disease; results were 500-fold in silico cross-validated. RESULTS: Thirty-three MDMs showed marked methylation fold changes (10 to >1000) across all OC subtypes vs FTE. Eleven MDMs (GPRIN1, CDO1, SRC, SIM2, AGRN, FAIM2, CELF2, RIPPLY3, GYPC, CAPN2, BCAT1) were tested on plasma from 91 women with OC (73 (80%) high-grade serous (HGS)) and 91 without OC; the cross-validated 11-MDM panel highly discriminated OC from controls (96% (95% CI, 89-99%) specificity; 79% (69-87%) sensitivity, and AUC 0.91 (0.86-0.96)). Among the 5 stage I/II HGS OCs included, all were correctly identified. CONCLUSIONS: Whole methylome sequencing, stringent filtering criteria, and biological validation yielded candidate MDMs for OC that performed with high sensitivity and specificity in plasma. Larger plasma-based OC MDM studies, including testing of pre-diagnostic specimens, are warranted.


Assuntos
Metilação de DNA , Neoplasias Ovarianas , Biomarcadores Tumorais/genética , Proteínas CELF/genética , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/genética , Estudos de Viabilidade , Feminino , Marcadores Genéticos , Humanos , Proteínas do Tecido Nervoso/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Transaminases/genética
17.
Eur J Haematol ; 109(3): 271-281, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35617105

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) and nucleosomes, consisting of cfDNA and histones, are markers of cell activation and damage. In systemic inflammation these markers predict severity and fatality. However, the role of cfDNA in acute Graft-versus-Host Disease (aGvHD), a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), is unknown. OBJECTIVE: The aim of this study is to investigate the role of cfDNA as a marker of aGvHD. METHODS: We followed nucleosome levels in 37 allogeneic HSCT patients and an established xenotransplantation mouse model. We determined the origin of cfDNA with a species-specific polymerase chain reaction. RESULTS: In the plasma of aGvHD patients, nucleosome levels significantly increased around the time of aGvHD diagnosis compared to pretransplant, concurrently with a significant increase of known aGvHD markers ST2 and REG3α. In mice, we confirmed that nucleosomes were elevated during clinically detectable aGvHD. We found cfDNA to be mainly of human origin and to a lesser extent of mouse origin, indicating that cfDNA is released by (proliferating) human xeno-reactive PBMC and damaged mouse cells. CONCLUSION: We show increased cfDNA both in an aGvHD mouse model and in aGvHD patients. We also demonstrate that donor hematopoietic cells and to a lesser degree (damaged) host cells are the cellular source of cfDNA in aGvHD. We propose that nucleosomes and cfDNA might be an additive marker for aGvHD.


Assuntos
Ácidos Nucleicos Livres , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Animais , Biomarcadores , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucócitos Mononucleares , Camundongos , Nucleossomos
18.
Clin Chem Lab Med ; 60(10): 1518-1524, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35786439

RESUMO

Pleural effusion (PE) is a common sign caused by various disorders. Microbiology, histology and cytology are reference standards for these disorders. However, these diagnostic tools have limitations, including invasiveness, high cost, long turnaround time, and observer-dependent. Soluble biomarkers in pleural fluid (PF) are promising diagnostic tools because they are mininvasive, economical, and objective. Recent studies have revealed that some cell-free nucleic acids (e.g., DNA, mRNA, microRNA, and lncRNA) in PF are potential diagnostic markers for many disorders. Here, we review the performance of PF cell-free nucleic acids for differentiating and stratification of PE.


Assuntos
Ácidos Nucleicos Livres , Derrame Pleural Maligno , Derrame Pleural , Biomarcadores , Ácidos Nucleicos Livres/química , Exsudatos e Transudatos , Humanos , Derrame Pleural/diagnóstico , Derrame Pleural/metabolismo , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo
19.
Pol Merkur Lekarski ; 50(297): 155-159, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35801596

RESUMO

Cell-free DNA (cfDNA) is released into the circulation after apoptosis, necrosis, and active secretion from cells. In a healthy individual, cfDNA is present in small amounts, has a short half-life, and is predominantly derived from circulating hematopoietic cells. The composition and quantity of cfDNA dramatically changes during pathological conditions. Indeed, several studies reported elevated cfDNA concentration as a potential noninvasive biomarker in many diseases. AIM: The aim of the study was evaluation of the circulating cell-free DNA in patients with severe Covid-19 in comparison with patients with hospitalised community-acquired pneumonia (with and without hyperglycemia and type 2 diabetes mellitus) to determine the specificity, sensitivity and cutoff value of cfDNA for each nosology. MATERIALS AND METHODS: The studies were carried out on the basis of city and regional hospitals in the Luhansk region between 2015 to 2021. Were examined in the study 28 patients with a positive diagnosis of COVID-19 according to PCR analysis (14 women and 14 men), 60 patients with community- acquired pneumonia (CAP) (30 women and 30 men), 101 patients with community-acquired pneumonia and hyperglicemia (CAP+HH) (44 women and 57 men), 70 patients with type 2 diabetes mellitus (T2DM) (37 women and 33 men), 42 patients with community-acquired pneumonia in combination with type 2 diabetes mellitus (CAP+T2DM) (27 women and 15 men). The control group consisted of 81 healthy volunteer donor (46 women and 35 men). DNA fragmentation was measured with the diphenylamine assay. Statistical and graphical analyses were done using Statistica 7.0 StatSoft software and using GraphPad Prism version 9.0 (GraphPad Software, La Jolla, CA, USA) software. RESULTS: We found 3-4-fold higher concentration of serum cfDNA levels in COVID-19 patients (womens and mens) compared with healthy controls. Similarly, the levels of cfDNA were 1,5- to 2-fold higher in pneumoniawomens and pneumonia-mens, pneumonia+hyperglycemia-womens and pneumonia+hyperglycemia-mens pneumonia+Type2 Diabetes-womens and pneumonia+Type2 Diabetes-mens, compared with healthy controls. Our results indicate cfDNA profiles on admission can discriminate between patients with COVID-19 and community-acquired pneumonia at risk of severe disease and death with better performance than previously reported inflammatory markers. CONCLUSIONS: Circulating cell-free nucleic acids (cfDNA) are novel potential biomarkers of COVID-19 and community-acquired pneumonia identified. Our study is one of the first to analyze cfDNA level (the cutoff value of cfDNA concentration) for prediction of COVID-19 and community-acquired pneumonia (with and without complications and comorbidity diseases).


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Infecções Comunitárias Adquiridas , Diabetes Mellitus Tipo 2 , Hiperglicemia , Pneumonia , Biomarcadores , COVID-19/diagnóstico , Infecções Comunitárias Adquiridas/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Biópsia Líquida , Masculino , Pneumonia/diagnóstico
20.
Ann Oncol ; 32(9): 1167-1177, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34176681

RESUMO

BACKGROUND: A multi-cancer early detection (MCED) test used to complement existing screening could increase the number of cancers detected through population screening, potentially improving clinical outcomes. The Circulating Cell-free Genome Atlas study (CCGA; NCT02889978) was a prospective, case-controlled, observational study and demonstrated that a blood-based MCED test utilizing cell-free DNA (cfDNA) sequencing in combination with machine learning could detect cancer signals across multiple cancer types and predict cancer signal origin (CSO) with high accuracy. The objective of this third and final CCGA substudy was to validate an MCED test version further refined for use as a screening tool. PATIENTS AND METHODS: This pre-specified substudy included 4077 participants in an independent validation set (cancer: n = 2823; non-cancer: n = 1254, non-cancer status confirmed at year-one follow-up). Specificity, sensitivity, and CSO prediction accuracy were measured. RESULTS: Specificity for cancer signal detection was 99.5% [95% confidence interval (CI): 99.0% to 99.8%]. Overall sensitivity for cancer signal detection was 51.5% (49.6% to 53.3%); sensitivity increased with stage [stage I: 16.8% (14.5% to 19.5%), stage II: 40.4% (36.8% to 44.1%), stage III: 77.0% (73.4% to 80.3%), stage IV: 90.1% (87.5% to 92.2%)]. Stage I-III sensitivity was 67.6% (64.4% to 70.6%) in 12 pre-specified cancers that account for approximately two-thirds of annual USA cancer deaths and was 40.7% (38.7% to 42.9%) in all cancers. Cancer signals were detected across >50 cancer types. Overall accuracy of CSO prediction in true positives was 88.7% (87.0% to 90.2%). CONCLUSION: In this pre-specified, large-scale, clinical validation substudy, the MCED test demonstrated high specificity and accuracy of CSO prediction and detected cancer signals across a wide diversity of cancers. These results support the feasibility of this blood-based MCED test as a complement to existing single-cancer screening tests. CLINICAL TRIAL NUMBER: NCT02889978.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Biomarcadores Tumorais/genética , Metilação de DNA , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Oncogenes , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA