Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Dev Dyn ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546215

RESUMO

BACKGROUND: Neuronal lamination is a hallmark of the mammalian central nervous system (CNS) and underlies connectivity and function. Initial formation of this tissue architecture involves the integration of various signaling pathways that regulate the differentiation and migration of neural progenitor cells. RESULTS: Here, we demonstrate that mTORC1 mediates critical roles during neuronal lamination using the mouse retina as a model system. Down-regulation of mTORC1-signaling in retinal progenitor cells by conditional deletion of Rptor led to decreases in proliferation and increased apoptosis during embryogenesis. These developmental deficits preceded aberrant lamination in adult animals which was best exemplified by the fusion of the outer and inner nuclear layer and the absence of an outer plexiform layer. Moreover, ganglion cell axons originating from each Rptor-ablated retina appeared to segregate to an equal degree at the optic chiasm with both contralateral and ipsilateral projections displaying overlapping termination topographies within several retinorecipient nuclei. In combination, these visual pathway defects led to visually mediated behavioral deficits. CONCLUSIONS: This study establishes a critical role for mTORC1-signaling during retinal lamination and demonstrates that this pathway regulates diverse developmental mechanisms involved in driving the stratified arrangement of neurons during CNS development.

2.
Dev Dyn ; 252(11): 1338-1362, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259952

RESUMO

BACKGROUND: A goal of developmental genetics is to identify functional interactions that underlie phenotypes caused by mutations. We sought to identify functional interactors of Vsx2, which when mutated, disrupts early retinal development. We utilized the Vsx2 loss-of-function mouse, ocular retardation J (orJ), to assess interactions based on principles of positive and negative epistasis as applied to bulk transcriptome data. This was first tested in vivo with Mitf, a target of Vsx2 repression, and then to cultures of orJ retina treated with inhibitors of Retinoid-X Receptors (RXR) to target Rxrg, an up-regulated gene in the orJ retina, and gamma-Secretase, an enzyme required for Notch signaling, a key mediator of retinal proliferation and neurogenesis. RESULTS: Whereas Mitf exhibited robust positive epistasis with Vsx2, it only partially accounts for the orJ phenotype, suggesting other functional interactors. RXR inhibition yielded minimal evidence for epistasis between Vsx2 and Rxrg. In contrast, gamma-Secretase inhibition caused hundreds of Vsx2-dependent genes associated with proliferation to deviate further from wild-type, providing evidence for convergent negative epistasis with Vsx2 in regulating tissue growth. CONCLUSIONS: Combining in vivo and ex vivo testing with transcriptome analysis revealed quantitative and qualitative characteristics of functional interaction between Vsx2, Mitf, RXR, and gamma-Secretase activities.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Secretases da Proteína Precursora do Amiloide/genética , Retina , Neurogênese/fisiologia
3.
Cell Mol Life Sci ; 77(20): 4117-4131, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31822965

RESUMO

Paralog factors are usually described as consolidating biological systems by displaying redundant functionality in the same cells. Here, we report that paralogs can also cooperate in distinct cell populations at successive stages of differentiation. In mouse embryonic spinal cord, motor neurons and V2 interneurons differentiate from adjacent progenitor domains that share identical developmental determinants. Therefore, additional strategies secure respective cell fate. In particular, Hb9 promotes motor neuron identity while inhibiting V2 differentiation, whereas Chx10 stimulates V2a differentiation while repressing motor neuron fate. However, Chx10 is not present at the onset of V2 differentiation and in other V2 populations. In the present study, we show that Vsx1, the single paralog of Chx10, which is produced earlier than Chx10 in V2 precursors, can inhibit motor neuron differentiation and promote V2 interneuron production. However, the single absence of Vsx1 does not impact on V2 fate consolidation, suggesting that lack of Vsx1 may be compensated by other factors. Nevertheless, Vsx1 cooperates with Chx10 to prevent motor neuron differentiation in early V2 precursors although these two paralog factors are not produced in the same cells. Hence, this study uncovers an original situation, namely labor division, wherein paralog genes cooperate at successive steps of neuronal development.


Assuntos
Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Humanos , Camundongos
4.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895315

RESUMO

Visual System Homeobox 2 (Vsx2) is a transcription factor expressed in the developing retina that regulates tissue identity, growth, and fate determination. Several mutations in the Vsx2 gene exist in mice, including a spontaneous nonsense mutation and two targeted missense mutations originally identified in humans. Here, we expand the genetic repertoire to include a LacZ reporter allele (Vsx2 LacZ ) designed to express beta-Galactosidase (b-GAL) and simultaneously disrupt Vsx2 function (knock-in/knock-out). The retinal expression pattern of b-GAL is concordant with VSX2, and the mutant allele is recessive. Vsx2 LacZ homozygous mice have congenital bilateral microphthalmia accompanied by defects in retinal development including ectopic expression of non-retinal genes, reduced proliferation, delayed neurogenesis, aberrant tissue morphology, and an absence of bipolar interneurons - all hallmarks of Vsx2 loss-of-function. Unexpectedly, the mutant VSX2 protein is stably expressed, and there are subtle differences in eye size and early retinal neurogenesis when compared to the null mutant, ocular retardation J. We propose that b-GAL expression from the Vsx2 LacZ allele is a reliable reporter of VSX2 expression and that the allele exhibits loss-of-function characteristics. However, the perdurance of the mutant VSX2 protein combined with subtle deviations from the null phenotype leaves open the possibility that Vsx2 LacZ allele is not a complete knock-out. The Vsx2 LacZ allele adds to the genetic toolkit for understanding Vsx2 function.

5.
Neural Regen Res ; 18(5): 933-939, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254971

RESUMO

Chx10-expressing V2a (Chx10+V2a) spinal interneurons play a large role in the excitatory drive of motoneurons. Chemogenetic ablation studies have demonstrated the essential nature of Chx10+V2a interneurons in the regulation of locomotor initiation, maintenance, alternation, speed, and rhythmicity. The role of Chx10+V2a interneurons in locomotion and autonomic nervous system regulation is thought to be robust, but their precise role in spinal motor regulation and spinal cord injury have not been fully explored. The present paper reviews the origin, characteristics, and functional roles of Chx10+V2a interneurons with an emphasis on their involvement in the pathogenesis of spinal cord injury. The diverse functional properties of these cells have only been substantiated by and are due in large part to their integration in a variety of diverse spinal circuits. Chx10+V2a interneurons play an integral role in conferring locomotion, which integrates various corticospinal, mechanosensory, and interneuron pathways. Moreover, accumulating evidence suggests that Chx10+V2a interneurons also play an important role in rhythmic patterning maintenance, left-right alternation of central pattern generation, and locomotor pattern generation in higher order mammals, likely conferring complex locomotion. Consequently, the latest research has focused on postinjury transplantation and noninvasive stimulation of Chx10+V2a interneurons as a therapeutic strategy, particularly in spinal cord injury. Finally, we review the latest preclinical study advances in laboratory derivation and stimulation/transplantation of these cells as a strategy for the treatment of spinal cord injury. The evidence supports that the Chx10+V2a interneurons act as a new therapeutic target for spinal cord injury. Future optimization strategies should focus on the viability, maturity, and functional integration of Chx10+V2a interneurons transplanted in spinal cord injury foci.

6.
Front Cell Neurosci ; 13: 47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873004

RESUMO

Vertebrate central pattern generators (CPGs) controlling locomotion contain neurons which provide the excitation that drives and maintains network rhythms. In a simple vertebrate, the developing Xenopus tadpole, we study the role of excitatory descending neurons with ipsilateral projecting axons (descending interneurons, dINs) in the control of swimming rhythms. In tadpoles with both intact central nervous system (CNS) and transections in the hindbrain, exciting some individual dINs in the caudal hindbrain region could start swimming repeatedly. Analyses indicated the recruitment of additional dINs immediately after such evoked dIN spiking and prior to swimming. Excitation of dINs can therefore be sufficient for the initiation of swimming. These "powerful" dINs all possessed both ascending and descending axons. However, their axon projection lengths were not different from those of other excitatory dINs at similar locations. The dorsoventral position of dINs, as a population, significantly better matched that of cells marked by immunocytochemistry for the transcription factor CHX10 than other known neuron types in the ventral hindbrain and spinal cord. The comparison suggests that the excitatory interneurons including dINs are CHX10-positive, in agreement with CHX10 as a marker for excitatory neurons with ipsilateral projections in the spinal cord and brainstem of other vertebrates. Overall, our results further demonstrate the key importance of dINs in driving tadpole swimming rhythms.

7.
Front Neurosci ; 13: 1077, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680817

RESUMO

As the capacity to isolate distinct neuronal cell types has advanced over the past several decades, new two- and three-dimensional in vitro models of the interactions between different brain regions have expanded our understanding of human neurobiology and the origins of disease. These cultures develop distinctive patterns of activity, but the extent that these patterns are determined by the molecular identity of individual cell types versus the specific pattern of network connectivity is unclear. To address the question of how individual cell types interact in vitro, we developed a simplified culture using two excitatory neuronal subtypes known to participate in the in vivo reticulospinal circuit: HB9+ spinal motor neurons and Chx10+ hindbrain V2a neurons. Here, we report the emergence of cell type-specific patterns of activity in culture; on their own, Chx10+ neurons developed regular, synchronized bursts of activity that recruited neurons across the entire culture, whereas HB9+ neuron activity consisted of an irregular pattern. When these two subtypes were cocultured, HB9+ neurons developed synchronized network bursts that were precisely correlated with Chx10+ neuron activity, thereby recreating an aspect of Chx10+ neurons' role in driving motor activity. These bursts were dependent on AMPA receptors. Our results demonstrate that the molecular classification of the neurons comprising in vitro networks is a crucial determinant of their activity. It is therefore possible to improve both the reproducibility and the applicability of in vitro neurobiological and disease models by carefully controlling the constituent mixtures of neuronal subtypes.

8.
Cell Rep ; 23(5): 1286-1300.e7, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719245

RESUMO

Little is known about the organizational and functional connectivity of the corticospinal (CS) circuits that are essential for voluntary movement. Here, we map the connectivity between CS neurons in the forelimb motor and sensory cortices and various spinal interneurons, demonstrating that distinct CS-interneuron circuits control specific aspects of skilled movements. CS fibers originating in the mouse motor cortex directly synapse onto premotor interneurons, including those expressing Chx10. Lesions of the motor cortex or silencing of spinal Chx10+ interneurons produces deficits in skilled reaching. In contrast, CS neurons in the sensory cortex do not synapse directly onto premotor interneurons, and they preferentially connect to Vglut3+ spinal interneurons. Lesions to the sensory cortex or inhibition of Vglut3+ interneurons cause deficits in food pellet release movements in goal-oriented tasks. These findings reveal that CS neurons in the motor and sensory cortices differentially control skilled movements through distinct CS-spinal interneuron circuits.


Assuntos
Córtex Motor , Movimento/fisiologia , Rede Nervosa , Tratos Piramidais , Córtex Somatossensorial , Sinapses/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Córtex Motor/citologia , Córtex Motor/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Tratos Piramidais/citologia , Tratos Piramidais/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia
9.
Curr Biol ; 26(17): 2319-28, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27524486

RESUMO

Precise control of speed during locomotion is essential for adaptation of behavior in different environmental contexts [1-4]. A central question in locomotion lies in understanding which neural populations set locomotor frequency during slow and fast regimes. Tackling this question in vivo requires additional non-invasive tools to silence large populations of neurons during active locomotion. Here we generated a stable transgenic line encoding a zebrafish-optimized botulinum neurotoxin light chain fused to GFP (BoTxBLC-GFP) to silence synaptic output over large populations of motor neurons or interneurons while monitoring active locomotion. By combining calcium imaging, electrophysiology, optogenetics, and behavior, we show that expression of BoTxBLC-GFP abolished synaptic release while maintaining characterized activity patterns and without triggering off-target effects. As chx10(+) V2a interneurons (V2as) are well characterized as the main population driving the frequency-dependent recruitment of motor neurons during fictive locomotion [5-14], we validated our silencing method by testing the effect of silencing chx10(+) V2as during active and fictive locomotion. Silencing of V2as selectively abolished fast locomotor frequencies during escape responses. In addition, spontaneous slow locomotion occurred less often and at frequencies lower than in controls. Overall, this silencing approach confirms that V2a excitation is critical for the production of fast stimulus-evoked swimming and also reveals a role for V2a excitation in the production of slower spontaneous locomotor behavior. Altogether, these results establish BoTxBLC-GFP as an ideal tool for in vivo silencing for probing the development and function of neural circuits from the synaptic to the behavioral level.


Assuntos
Toxinas Botulínicas/farmacologia , Locomoção/efeitos dos fármacos , Neurotoxinas/farmacologia , Natação/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/fisiologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
10.
Cell Rep ; 16(6): 1642-1652, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477290

RESUMO

During development, two cell types born from closely related progenitor pools often express identical transcriptional regulators despite their completely distinct characteristics. This phenomenon implies the need for a mechanism that operates to segregate the identities of the two cell types throughout differentiation after initial fate commitment. To understand this mechanism, we investigated the fate specification of spinal V2a interneurons, which share important developmental genes with motor neurons (MNs). We demonstrate that the paired homeodomain factor Chx10 functions as a critical determinant for V2a fate and is required to consolidate V2a identity in postmitotic neurons. Chx10 actively promotes V2a fate, downstream of the LIM-homeodomain factor Lhx3, while concomitantly suppressing the MN developmental program by preventing the MN-specific transcription complex from binding and activating MN genes. This dual activity enables Chx10 to effectively separate the V2a and MN pathways. Our study uncovers a widely applicable gene regulatory principle for segregating related cell fates.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Galinhas , Neurônios Motores/metabolismo , Ativação Transcricional/fisiologia
11.
Front Cell Neurosci ; 6: 39, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23060747

RESUMO

Whole cell recordings (WCRs) are frequently used to study neuronal properties, but may be problematic when studying neuromodulatory responses, due to dialysis of the cell's cytoplasm. Perforated patch recordings (PPR) avoid cellular dialysis and might reveal additional modulatory effects that are lost during WCR. We have previously used WCR to characterize the responses of the V2a class of Chx10-expressing neurons to serotonin (5-HT) in the neonatal mouse spinal cord (Zhong et al., 2010). Here we directly compare multiple aspects of the responses to 5-HT using WCR and PPR in Chx10-eCFP neurons in spinal cord slices from 2 to 4 day old mice. Cellular properties recorded in PPR and WCR were similar, but high-quality PP recordings could be maintained for significantly longer. Both WCR and PPR cells could respond to 5-HT, and although neurons recorded by PPR showed a significantly greater response to 5-HT in some parameters, the absolute differences between PPR and WCR were small. We conclude that WCR is an acceptable recording method for short-term recordings of neuromodulatory effects, but the less invasive PPR is preferable for detailed analyses and is necessary for stable recordings lasting an hour or more.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA