Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Small ; 20(37): e2401878, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38742982

RESUMO

Atomic doping is widely employed to fine-tune crystal structures, energy band structures, and the corresponding electrical properties. However, due to the difficulty in precisely regulating doping sites and concentrations, establishing a relationship between electricity properties and doping becomes a huge challenge. In this work, a modulation strategy on A-site cation dopant into spinel-phase metal sulfide Co9S8 lattice via Fe and Ni elements is developed to improve the microwave absorption (MA) properties. At the atomic scale, accurately controlling doped sites can introduce local lattice distortions and strain concentration. Tunned electron energy redistribution of the doped Co9S8 strengthens electron interactions, ultimately enhancing the high-frequency dielectric polarization (ɛ' from 10.5 to 12.5 at 12 GHz). For the Fe-doped Co9S8, the effective absorption bandwidth (EAB) at 1.7 mm increases by 5%, and the minimum reflection loss (RLmin) improves by 26% (EAB = 5.8 GHz, RLmin = -46 dB). The methodology of atomic-scale fixed-point doping presents a promising avenue for customizing the dielectric properties of nanomaterials, imparting invaluable insights for the design of cutting-edge high-performance microwave absorption materials.

2.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124934

RESUMO

CdS quantum dots (CdS QDs) are regarded as a promising photocatalyst due to their remarkable response to visible light and suitable placement of conduction bands and valence bands. However, the problem of photocorrosion severely restricts their application. Herein, the CdS QDs-Co9S8 hollow nanotube composite photocatalyst has been successfully prepared by loading Co9S8 nanotubes onto CdS QDs through an electrostatic self-assembly method. The experimental results show that the introduction of Co9S8 cocatalyst can form a stable structure with CdS QDs, and can effectively avoid the photocorrosion of CdS QDs. Compared with blank CdS QDs, the CdS QDs-Co9S8 composite exhibits obviously better photocatalytic hydrogen evolution performance. In particular, CdS QDs loaded with 30% Co9S8 (CdS QDs-30%Co9S8) demonstrate the best photocatalytic performance, and the H2 production rate reaches 9642.7 µmol·g-1·h-1, which is 60.3 times that of the blank CdS QDs. A series of characterizations confirm that the growth of CdS QDs on Co9S8 nanotubes effectively facilitates the separation and migration of photogenerated carriers, thereby improving the photocatalytic hydrogen production properties of the composite. We expect that this work will facilitate the rational design of CdS-based photocatalysts, thereby enabling the development of more low-cost, high-efficiency and high-stability composites for photocatalysis.

3.
Small ; 19(32): e2300950, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066725

RESUMO

Lithium-sulfur batteries (LSBs) are recognized as the prospective candidate in next-generation energy storage devices due to their gratifying theoretical energy density. Nonetheless, they still face the challenges of the practical application including low utilization of sulfur and poor cycling life derived from shuttle effect of lithium polysulfides (LiPSs). Herein, a hollow polyhedron with heterogeneous CoO/Co9 S8 /nitrogen-doped carbon (CoO/Co9 S8 /NC) is obtained through employing zeolitic imidazolate framework as precursor. The heterogeneous CoO/Co9 S8 /NC balances the redox kinetics of Co9 S8 with chemical adsorption of CoO toward LiPSs, effectively inhibiting the shuttle of LiPSs. The mechanisms are verified by both experiment and density functional theory calculation. Meanwhile, the hollow structure acts as a sulfur storage chamber, which mitigates the volumetric expansion of sulfur and maximizes the utilization of sulfur. Benefiting from the above advantages, lithium-sulfur battery with S-CoO/Co9 S8 /NC achieves a high initial discharge capacity (1470 mAh g-1 ) at 0.1 C and long cycle life (ultralow capacity attenuation of 0.033% per cycle after 1000 cycles at 1 C). Even under high sulfur loading of 3.0 mg cm-2 , lithium-sulfur battery still shows the satisfactory electrochemical performance. This work may provide an idea to elevate the electrochemical performance of LSBs by constructing a hollow metal oxide/sulfide/nitrogen-doped carbon heterogeneous structure.

4.
Chemphyschem ; 24(2): e202200607, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36177607

RESUMO

The development of nonprecious metal-based electrocatalysts with remarkable catalytic activity and long-cycling lifespan toward oxygen reduction reaction (ORR) and evolution reaction (OER) is especially important for rechargeable zinc-air batteries (ZABs). Herein, monodispersed Co9 S8 nanoparticles embedded in nitrogen-doped hierarchically porous hollow carbon spheres (Co9 S8 NPs/NHCS) are synthesized through a template-assisted strategy followed by a co-assembly, thermal annealing, and sulfurization process. Benefiting from larger specific surface area, hierarchically porous hollow structure, and carbon nanotubes self-growth, the obtained Co9 S8 NPs/NHCS-0.5 electrocatalyst exhibits decent performance for ORR (E1/2 =0.85 V) and OER (E10 =1.55 V). A rechargeable ZAB assembled using the Co9 S8 NPs/NHCS-0.5 as air cathode delivers a maximum power density of 116 mW cm-2 , high open circuit voltage of 1.47 V, and good durability (no obvious voltage decay after 1200 cycles (200 hours)). Such a hierarchically porous hollow structure of Co9 S8 NPs/NHCS-0.5 provides a confined space shell and an interconnected hollow core to achieve outstanding bifunctional catalytic activity and cycling stability, which surpass the benchmark Pt/C-RuO2 .

5.
Nanotechnology ; 34(18)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36720154

RESUMO

A Z-scheme Cd0.85Zn0.15S/Co9S8(CZS-CS) photocatalyst was reasonably fabricated by a simple solvothermal method for the effective visible-light-driven H2evolution and organic pollutants degradation. The precise construction of the CZS-CS composites provided an efficient heterogeneous contact interface and abundant reaction sites for the proposed photocatalytic reaction. The homogeneous Co9S8nanocrystals were uniformly wrapped on the surface of Cd0.85Zn0.15S nanorods, forming an intimate-contact interface, markedly contributed to the light collection and effectively inhibited the charge-carrier recombination. The optimized CZS-CS-15 composites exhibited a special H2production rate reaching 19.15 mmol·h-1·g-1, roughly 1915 and 4.5 times of pure Co9S8and Cd0.85Zn0.15S samples and 85% of tetracycline (TC) molecule within 15 min was degraded. Furthermore, trapping experiments confirmed that h+was the main active species for TC photodegradation. Moreover, the obtained photocatalysts manifested stability without apparent activity declines during the proposed reactions. Finally, the Z-scheme photocatalytic mechanism was verified to illustrate the characteristics of efficient charge transfer and high redox ability. This study provided a rational and learnable strategy for designing dual-functional Z-scheme heterojunction photocatalysts.

6.
Small ; 18(50): e2205158, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310150

RESUMO

Although lithium-sulfur batteries (LSBs) promise high theoretical energy density and potential cost effectiveness, their applications are severely impeded by the shuttling and sluggish redox kinetics of lithium polysulfides (LiPSs). In this context, a Co9 S8 @MoS2 heterostructure is sophisticatedly designed as an efficient catalytic host to boost the sulfur reduction reaction/evolution reaction (SRR/SER) kinetics and suppresses the LiPSs shuttling in LSBs. The results indicate that the electronic structure is manipulated in the Co9 S8 @MoS2 heterostructure, where the built-in electric fields (BIEFs) within the heterointerfaces enable the sufficient adsorption sites to accelerate the ionic diffusion/charge transfer kinetics for LiPSs redox, thus enhancing the sulfur conversion. By tuning the electronic structure, the metal d-band of Co9 S8 @MoS2 heterostructure plays an important role in adsorbing and catalyzing the conversion of LiPSs, thus promoting the reaction kinetics of the corresponding LSBs. This work unlocks the potential of heterostructures as promising catalysts to the design of high-energy and stabilized LSBs.

7.
Chemistry ; 27(28): 7704-7711, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33780562

RESUMO

Low-cost heteroatom-doped carbon nanomaterials have been widely studied for efficient oxygen reduction reaction and energy storage and conversion in metal-air batteries. A Masson pine twigs-like 3-dimensional network construction of carbon nanofibers (CNFs) with abundant straight long Co, N, and S-doped carbon nanotubes (CNTs) is developed by thermal treatment of Co-based polymer coated onto polyacrylonitrile nanofiber network together with thiourea at 900 °C, denoted as CNFT-Co9 S8 -900. It is interesting to note that the introduction of a high concentration of sulfur does not lead to the complete toxicity of catalysts, but promotes the axial growth to selectively form straight CNTs instead of curly bamboo-like CNTs. The highly graphitized in-situ grown Co, N, S-doped CNTs and the 3-dimensional N-doped CNF network provide both active catalytic sites and highly conductive paths, which are beneficial for oxygen reduction reaction (ORR). Thus, the optimal CNFT-Co9 S8 -900 performs the excellent ORR catalytic activity with a half-wave potential of 0.84 V and a diffusion-limited current density of 5.49 mA cm-2 . Furthermore, the CNFT-Co9 S8 -900-based Zn-air devices also possess a high power density of 136.9 mW cm-2 better than commercial Pt/C.

8.
Angew Chem Int Ed Engl ; 59(21): 8255-8261, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31989737

RESUMO

Visible-light-responsive hierarchical Co9 S8 /ZnIn2 S4 tubular heterostructures are fabricated by growing 2D ZnIn2 S4 nanosheets on 1D hollow Co9 S8 nanotubes. This design combines two photoresponsive sulfide semiconductors in a stable heterojunction with a hierarchical hollow tubular structure, improving visible-light absorption, yielding a large surface area, exposing sufficient catalytically active sites, and promoting the separation and migration of photogenerated charges. The hierarchical nanotubes exhibit excellent photocatalytic H2 evolution and CrVI reduction efficiency. Under visible-light illumination, the optimized Co9 S8 /ZnIn2 S4 heterostructure provides a remarkable H2 generation rate of 9039 µmol h-1 g-1 without the use of any co-catalysts and CrVI is completely reduced in 45 min. The Co9 S8 /ZnIn2 S4 heterostructure is stable after multiple photocatalytic cycles.

9.
Angew Chem Int Ed Engl ; 58(19): 6239-6243, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30861268

RESUMO

The sodium-ion battery is a promising battery technology owing to its low price and high abundance of sodium. However, the sluggish kinetics of sodium ion makes it hard to achieve high-rate performance, therefore impairing the power density. In this work, a fiber-in-tube Co9 S8 -carbon(C)/Co9 S8 is designed with fast sodiation kinetics. The experimental and simulation analysis show that the dominating capacitance mechanism for the high Na-ion storage performance is due to abundant grain boundaries, three exposed layer interfaces, and carbon wiring in the design. As a result, the fiber-in-tube hybrid anode shows a high specific capacity of 616 mAh g-1 after 150 cycles at 0.5 A g-1 . At 1 A g-1 , a capacity of ca. 451 mAh g-1 can be achieved after 500 cycles. More importantly, a high energy density of 779 Wh kg-1 and power density of 7793 W kg-1 can be obtained simultaneously.

10.
Small ; 14(20): e1704035, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29665268

RESUMO

Metal-organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self-sacrificial templates to achieve function-oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal-free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost-efficient strategy to synthesize Co9 S8 nanoparticles-embedded N/S-codoped carbon nanofibers (Co9 S8 /NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core-shell ZIF-wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co9 S8 /N, S-codoped carbon nanocomposites through a one-step calcination reaction. The optimal Co9 S8 /NSCNFs-850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm-2 , a small Tafel slope of 54 mV dec-1 , and superior long-term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF-based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non-noble-metal electrocatalysts for sustainable energy conversion.

11.
Chemistry ; 24(10): 2339-2343, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29030955

RESUMO

Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co9 S8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co9 S8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g-1 at 10 A g-1 ). These results demonstrate that the new nanostructured Co9 S8 /GPs can be potentially applied in high performance flexible supercapacitors.

12.
Small ; 13(14)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28112864

RESUMO

Uniform sized Co9 S8 /MoS2 yolk-shell spheres with an average diameter of about 500 nm have been synthesized by a facile route. When evaluated as anodes for lithium-ion and sodium-ion batteries, these Co9 S8 /MoS2 yolk-shell spheres show high specific capacities, excellent rate capabilities, and good cycling stability.

13.
Chemistry ; 23(36): 8749-8755, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28429831

RESUMO

A very easy and cost-effective approach to the fabrication of monolithic Co9 S8 water oxidation electrodes (Co@Co9 S8 ), fabricated by one-step hydrothermal treatment of commercially available cobalt foam in the presence of thiourea, is reported. The morphology, crystal structure, microstructure, and composition of as-fabricated Co@Co9 S8 electrodes were examined by using scanning electron microscopy (SEM), powder X-ray diffractometry (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS), and their electrochemical properties were investigated by cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). When used to catalyze the oxygen evolution reaction (OER) in alkaline solution, the Co@Co9 S8 electrode with an optimal Co9 S8 loading exhibits outstanding catalytic activity, requiring a low overpotential of 350 mV to deliver an anodic current density of 10 mA cm-2 and showing fast kinetics for OER with a small Tafel slope (55 mV dec-1 ) and charge-transfer resistance (0.44â€…Ω cm-2 ), which outperforms many sulfide-based OER catalysts and some state-of-the-art noble metal catalysts recently reported in the literature. Importantly, the electrodes show excellent long-term stability, and are capable of operating at both a low current density and a high current density relevant to industrial water electrolysis up to 100 hours.

14.
Chemistry ; 23(40): 9517-9524, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28370522

RESUMO

Co9 S8 is considered a promising candidate as the anode material in lithium-ion batteries (LIBs) because of its remarkable electrical conductivity, high theoretical capacity, and low cost. However, the practical application of Co9 S8 is greatly restricted because of its poor cycling stability and rate performance, which result mainly from the large volume expansion and dissolution of the polysulfide intermediates during the charge/discharge process. In this report, Co9 S8 embedded in N-rich carbon hollow spheres are successfully designed and synthesized through an in situ pyrolysis and sulfurization process, employing the well-known ZIF-67 as the precursor and ethanethiol as the sulfur source. Co9 S8 nanoparticles embedded in the N-rich hollow carbon shell exhibit excellent lithium storage properties at a high charge/discharge rate. A discharge capacity of 784 mAh g-1 is obtained upon battery testing at a current density of 1 C (544 mA g-1 ). Even upon cycling at a current density of 4 C, the as-prepared Co9 S8 /N-C can still deliver a discharge capacity of 518 mAh g-1 . The excellent battery performance can be attributed to the hollow structure as well as the N-rich carbon encapsulation. Moreover, this metal-organic framework sulfurization route also shows good generality for the synthesis of other metal sulfide-carbon composites such as ZnS/N-C and Cu2 S/C.

15.
Nano Lett ; 15(10): 6689-95, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26313009

RESUMO

Atomic layer deposition (ALD) of cobalt sulfide (Co9S8) is reported. The deposition process uses bis(N,N'-diisopropylacetamidinato)cobalt(II) and H2S as the reactants and is able to produce high-quality Co9S8 films with an ideal layer-by-layer ALD growth behavior. The Co9S8 films can also be conformally deposited into deep narrow trenches with aspect ratio of 10:1, which demonstrates the high promise of this ALD process for conformally coating Co9S8 on high-aspect-ratio 3D nanostructures. As Co9S8 is a highly promising electrochemical active material for energy devices, we further explore its electrochemical performance by depositing Co9S8 on porous nickel foams for supercapacitor electrodes. Benefited from the merits of ALD for making high-quality uniform thin films, the ALD-prepared electrodes exhibit remarkable electrochemical performance, with high specific capacitance, great rate performance, and long-term cyclibility, which highlights the broad and promising applications of this ALD process for energy-related electrochemical devices, as well as for fabricating complex 3D nanodevices in general.

16.
Adv Mater ; 36(2): e2306138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37920965

RESUMO

Designing bifunctional low-cost photo-assisted electrocatalysts for converting solar and electric energy into hydrogen energy remains a huge challenge. Herein, a heterojunction (Fe cluster modified Co9 S8 loaded on carbon nanotubes, Co9 S8 -Fe@CNT) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is demonstrated. Benefiting from the good electronic conductivity and spatial confinement of the carbon skeleton, as well as the electronic structure regulation of the Fe cluster, Co9 S8 -Fe@CNT exhibits excellent catalytic performance with a low overpotential of 150 mV for OER and 135 mV for HER at 10 mA cm-2 . Upon light irradiation, holes and electrons are generated in the valence band and conduction band of the Co9 S8 , respectively. Part of the charges are transferred to the interface to facilitate the catalytic reaction, while the remaining are transferred by the electrode. When working as a bifunctional catalyst for overall water splitting, the performance can reach 1.33 V at under light conditions, which is significantly better than 1.52 V in a dark environment. Theoretical calculations revealed lowered Gibbs free energy (∆GH *) of the heterojunction with the effect of Fe modification of Co9 S8 . This work sheds a new light in designing novel photoelectrochemical materials to convert solar and electric energy into chemical energy.

17.
J Colloid Interface Sci ; 662: 748-759, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377694

RESUMO

The increase of reaction temperature of electrocatalysts and the construction of heterogeneous structures is regarded as an efficient method to improve the electrocatalytic water splitting activity. Here, we report an approach to enhance the local heat and active sites of the catalyst by building a heterostructure with Co9S8 to significantly improve its electrocatalytic performance. The as-fabricated Co9S8@Ce-NiCo LDH/NF electrode possesses a notable photothermal ability, as it effectively converts near-infrared (NIR) light into the local heat, owing to its significant optical absorption. Leveraging these favorable qualities, the prepared Co9S8@Ce-NiCo LDH/NF electrode showed impressive performance in both hydrogen evolution reaction (HER) (η100 = 144 mV) and oxygen evolution reaction (OER) (η100 = 229 mV) under NIR light. Compared to the absence of the NIR light, the presence of NIR irradiation leads to a 24.6 % increase in catalytic efficiency for HER and a 15.8 % increase for OER. Additionally, other dual-functional electrocatalysts like NiCo-P, NiFeMo, and NiFe(OH)x also demonstrated significantly enhanced photothermal effects and improved catalytic performance owing to the augmented photothermal conversion when combined with Co9S8. This work offers novel pathways for the development of photothermal-electrocatalytic systems that facilitate economically efficient and energy-conserving overall water splitting processes.

18.
J Colloid Interface Sci ; 664: 329-337, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479269

RESUMO

Co9S8 has been extensively studied as a promising catalyst for water electrolysis. Doping Co9S8 with Fe improves its oxygen evolution reaction (OER) performance by regulating the catalyst self-reconfigurability and enhancing the absorption capacity of OER intermediates. However, the poor alkaline hydrogen evolution reaction (HER) properties of Co9S8 limit its application in bifunctional water splitting. Herein, we combined Fe doping and sulfur vacancy engineering to synergistically enhance the bifunctional water-splitting performance of Co9S8. The as-synthesized Co6Fe3S8 catalyst exhibited excellent OER and HER characteristics with low overpotentials of 250 and 84 mV, respectively. It also resulted in the low Tafel slopes of 135 mV dec-1 for the OER and 114 mV dec-1 for the HER. A two-electrode electrolytic cell with Co6Fe3S8 used as both the cathode and anode produced a current density of 10 mA cm-2 at a low voltage of only 1.48 V, maintaining high stability for 100 h. The results of in/ex-situ experiments indicated that the OER process induced electrochemical reconfiguration, forming CoOOH/FeOOH active species on the catalyst surface to enhance its OER performance. Density functional theory (DFT) simulations revealed that Fe doping and the presence of unsaturated coordination metal sites in Co6Fe3S8 promoted H2O and H* adsorption for the HER. The findings of this study can help develop a strategy for designing highly efficient bifunctional water splitting electrocatalysts.

19.
J Colloid Interface Sci ; 667: 425-432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640661

RESUMO

Developing an efficient and low-cost oxygen reduction electrocatalyst is essential for the application of aqueous zinc-air batteries (ZABs). Herein, we report a facile adsorption-confined pyrolysis strategy to fabricate the hybrid electrocatalyst (denoted as Co9S8/CoSA-PC) by embedding Co9S8 nanoparticles into Co single atoms (Co-SAs) anchored porous carbon sheets for boosting oxygen reduction reaction (ORR) durability. In this strategy, the Co2+ ions are first absorbed into oxygen-rich porous carbon nanosheets and further form the Co-SAs with the help of thiourea in the following pyrolysis procedure, which is believed to be able to confine the generated Co9S8 nanoparticles into carbon frameworks due to their interface interaction. Benefiting from the synergistic effect of different components, the obtained Co9S8/CoSA-PC electrocatalyst for ORR exhibits outstanding catalytic activity with a half-wave potential of 0.82 V and a distinguished long-term durability with a current retention of 80 % after cycling 80 h under alkaline conditions, which is superior to commercial Pt/C. Moreover, the assembled ZABs with Co9S8/CoSA-PC as cathodic catalyst deliver a high specific capacity of 764 mAh gZn-1 at 10 mA cm-2 and the outstanding peak power density of up to 221.4 mW cm-2. This work provides a novel structure design strategy to prepare transition metal sulfide-based electrocatalysts with superior durability for ORR.

20.
J Colloid Interface Sci ; 669: 965-974, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759595

RESUMO

Efficient oxygen evolution reaction (OER) is vital for water electrolysis and advanced hydrogen energy production. However, the sluggish kinetics of this reaction require significant overpotentials, leading to high energy consumption. Therefore, developing OER electrocatalysts with exceptional performance and long-term durability is crucial for enhancing the energy efficiency and cost-effectiveness of the hydrogen production process. In this research, novel FeOOH/Co9S8 catalysts were prepared through a two-step hydrothermal reaction followed by one-step electrodeposition on nickel foam for an alkaline OER. The as-obtained catalysts possessed abundant non-homogeneous interfaces between FeOOH and Co9S8 nanosheets, conducive to optimized coordination environments of Fe and Co sites by redistributing interfacial charges. This synergy strengthened the chemisorption of oxygenated intermediates, leading to accelerated reaction kinetics, abundant active sites, and enhanced OER performance. The optimized electrocatalyst FeOOH/Co9S8-15 achieved a current density of 10 mA cm-2 at an overpotential of 248 mV and good stability for over 140 h. This study presents a novel approach for producing compelling and durable alkaline dielectric OER electrocatalysts, which will be helpful in the future manufacturing of advanced energy devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA