Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2476: 75-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35635698

RESUMO

Longitudinal magnetic tweezers (L-MT) have seen wide-scale adoption as the tool of choice for stretching and twisting a single DNA molecule. They are also used to probe topological changes in DNA as a result of protein binding and enzymatic activity. However, in the longitudinal configuration, the DNA molecule is extended perpendicular to the imaging plane. As a result, it is only possible to infer biological activity from the motion of the tethered paramagnetic microsphere. Described here is a "transverse" magnetic tweezers (T-MT) geometry featuring simultaneous control of DNA extension and spatially coincident video-rate epi-fluorescence imaging. Unlike in L-MT, DNA tethers in T-MT are extended parallel to the imaging plane between two micron-sized spheres, and importantly protein targets on the DNA can be localized using fluorescent nanoparticles. The T-MT can manipulate a long DNA construct at molecular extensions approaching the contour length defined by B-DNA helical geometry, and the measured entropic elasticity agrees with the wormlike chain model (force <35 pN). By incorporating a torsionally constrained DNA tether, the T-MT would allow both the relative extension and twist of the tether to be manipulated, while viewing far-red emitting fluorophore-labeled targets. This T-MT design has the potential to enable the study of DNA binding and remodeling processes under conditions of constant force and defined torsional stress.


Assuntos
DNA , Magnetismo , DNA/química , Fenômenos Magnéticos , Magnetismo/métodos , Microscopia de Fluorescência , Nanotecnologia
2.
Methods Mol Biol ; 1431: 73-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27283303

RESUMO

Longitudinal magnetic tweezers (L-MT) have seen wide-scale adoption as the tool-of-choice for stretching and twisting a single DNA molecule. They are also used to probe topological changes in DNA as a result of protein binding and enzymatic activity. However, in the longitudinal configuration, the DNA molecule is extended perpendicular to the imaging plane. As a result, it is only possible to infer biological activity from the motion of the tethered superparamagnetic microsphere. Described here is a "transverse" magnetic tweezers (T-MT) geometry featuring simultaneous control of DNA extension and spatially coincident video-rate epifluorescence imaging. Unlike in L-MT, DNA tethers in T-MT are extended parallel to the imaging plane between two micron-sized spheres, and importantly protein targets on the DNA can be localized using fluorescent nanoparticles. The T-MT can manipulate a long DNA construct at molecular extensions approaching the contour length defined by B-DNA helical geometry, and the measured entropic elasticity agrees with the worm-like chain model (force < 35 pN). By incorporating a torsionally constrained DNA tether, the T-MT would allow both the relative extension and twist of the tether to be manipulated, while viewing far-red emitting fluorophore-labeled targets. This T-MT design has the potential to enable the study of DNA binding and remodeling processes under conditions of constant force and defined torsional stress.


Assuntos
DNA/ultraestrutura , Imagem Individual de Molécula/instrumentação , Processamento de Imagem Assistida por Computador , Fenômenos Magnéticos , Microscopia de Fluorescência/instrumentação , Nanotecnologia/instrumentação , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA