Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673727

RESUMO

Despite incessant research, colorectal cancer (CRC) is still one of the most common causes of fatality in both men and women worldwide. Over time, advancements in medical treatments have notably enhanced the survival rates of patients with colorectal cancer. Managing metastatic CRC involves a complex tradeoff between the potential benefits and adverse effects of treatment, considering factors like disease progression, treatment toxicity, drug resistance, and the overall impact on the patient's quality of life. An increasing body of evidence highlights the significance of the cancer stem cell (CSC) concept, proposing that CSCs occupy a central role in triggering cancer. CSCs have been a focal point of extensive research in a variety of cancer types, including CRC. Colorectal cancer stem cells (CCSCs) play a crucial role in tumor initiation, metastasis, and therapy resistance, making them potential treatment targets. Various methods exist for isolating CCSCs, and understanding the mechanisms of drug resistance associated with them is crucial. This paper offers an overview of the current body of research pertaining to the comprehension of CSCs in colorectal cancer.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Humanos , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Animais
2.
Bull Exp Biol Med ; 176(3): 369-375, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38340198

RESUMO

Colorectal carcinoma (CRC) is maintained by putative colorectal cancer stem-like cells (CRC-CSCs) that are responsible for CRC metastasis and relapse. Targeting these CSCs can be an effective treatment of CRC. However, reliable identification of CRC-CSCs remains controversial due to the absence of specific markers. It is assumed that glycoprotein CD133 can serve as a useful marker for identification of CRC-CSCs. In this study, we employed CD133 as a marker to identify CRC-CSCs in human (LoVo, HCT116, and SW620) and mouse (CT26) CRC cell lines. In these lines, CD133+ cells were isolated and identified by magnetic-activated cell sorting and flow cytometry. Proliferation, colony formation, and drug resistance of CD133+ cells were analyzed in vitro, and their tumorigenicity was determined in vivo on mice. Proliferation, colony-forming ability, drug resistance, and tumorigenicity of CD133+ cells were higher than those of CD133- cells. Thus, cultured CD133+ cells had the characteristics of CSCs. Hence, glycoprotein CD133 is a reliable marker to identify CRC-CSCs. These results can be used for designing a novel therapeutic target in CRC treatment.


Assuntos
Neoplasias Colorretais , Recidiva Local de Neoplasia , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Neoplasias Colorretais/metabolismo , Glicoproteínas/metabolismo , Separação Celular , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/genética , Antígeno AC133/metabolismo
3.
Mol Cell Biochem ; 477(7): 2001-2013, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35394639

RESUMO

Chemotherapy resistance of colorectal cancer stem cells (CRC-SCs) has become a major challenge in clinical treatment of cancer. Methionine restriction (MR) enhances the therapeutic effect of chemotherapeutic agents. The aim of this study was to explore the molecular pathways that MR affects the chemotherapeutic sensitivity of CRC-SCs. CD133+ and CD133- SW480 or SW620 cells were isolated by magnetic-activated cell sorting (MACS). Mouse xenograft tumor model was established by subcutaneous inoculation of CD133+ SW480. MTT assay was used to detect cell viability. Phase distribution of cell cycle was detected by flow cytometry. Western blotting was used to detect drug-resistant related protein expression. miR-320d and transcription factor c-Myc expressions were detected by qRT-PCR. The interaction between miR-320d and c-Myc was verified by luciferase assay. CD133+ SW480 and SW620 cells were more resistant to 5-fluorouracil (5-FU) than CD133- cells. In vitro and in vivo experiments showed that 5-FU and MR combined therapy further inhibited CD133+ cell activity and ATP binding cassette subfamily G member 2 (ABCG2) expression, and reduced tumor volume compared with drug administration alone. Interference with miR-320d or overexpression of c-Myc reversed the increased chemotherapeutic sensitivity of CRC-SCs induced by synergistic therapy with 5-FU and MR. miR-320d can target and regulate c-Myc. Interference with c-Myc could reverse the increase in cell viability and ABCG2 expression caused by down-regulation of miR-320d. In conclusion, the combined chemotherapy with MR can enhance the chemotherapeutic sensitivity of CRC-SCs by up-regulation of miR-320d to inhibit c-Myc expression, which lays a molecular basis for MR regulation of chemotherapeutic sensitivity of CRC-SCs.


Assuntos
Neoplasias Colorretais , MicroRNAs , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Metionina/farmacologia , Camundongos , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114016

RESUMO

Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-ß/SMAD or Wnt/ß-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética , Esferoides Celulares/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral/química , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/patologia , Análise de Sequência de RNA , Esferoides Celulares/química , Esferoides Celulares/citologia , Sequenciamento do Exoma
5.
Phytother Res ; 32(12): 2447-2455, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159926

RESUMO

Cancer stem cells (CSCs) are considered to play essential roles in the process of origination, proliferation, migration, and invasion of cancer, and their properties are regulated by Wnt/ß-catenin pathway. Phenethyl isothiocyanate (PEITC) is a natural product obtained from cruciferous vegetables with anticancer activities. The present study aimed to investigate the inhibitory effect and the underlying mechanisms of PEITC on colorectal CSCs. In this study, we found that PEITC can significantly reduce the size and number of colorectal cancer cell spheroids in serum-free medium. With increasing PEITC concentrations (10-40 µM), the number of spheroids was reduced to about 10% of the control group, and the percentage of CD133+ cells was decreased by about 3-16 folds. PEITC also decreased the expression of CSC markers. Meanwhile, inhibition of proliferation as well as induction of apoptosis of colorectal CSCs was observed after PEITC treatment. Furthermore, through activating Wnt/ß-catenin pathway with LiCl, the inhibitory effects of PEITC on colorectal CSCs were diminished. Our data suggested that PEITC can be an effective inhibitor of colorectal CSCs by targeting Wnt/ß-catenin pathway.


Assuntos
Neoplasias Colorretais/patologia , Isotiocianatos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
6.
Tumour Biol ; 39(6): 1010428317715155, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28639895

RESUMO

Cisplatin resistance in colorectal cancer largely results from the colorectal cancer stem cells which could be targeted to improve the efficacy of chemotherapy. MicroRNAs are possible modulators of cancer stem cell characteristics and maybe involved in the retention of cancer stem cell chemoresistance. The aim of this study was to investigate the biological function of miR-199a/b on cisplatin resistance in colorectal cancer stem cells and its related mechanisms. Here, ALDHA1+ cells from primary colorectal cancer tissues behaved similar to cancer stem cells and were chemoresistant to cisplatin. The presence of a variable fraction of ALDHA1 was detected in 9 out of 10 colorectal cancer specimens. Significantly, increased miR-199a/b expression was detected in ALDHA1+ colorectal cancer stem cells, accompanied by a downregulation of Gsk3ß and an overexpression of ß-catenin and ABCG2. In patient cohort, enhanced miR-199a/b expression in colorectal cancer tissues was associated with cisplatin response and poor patient survival. In addition, 80% of colorectal cancer samples showed lower level of Gsk3ß than their adjacent normal counterparts. Furthermore, Gsk3ß was the direct target of miR-199a/b. MiR-199a/b regulated Wnt/ß-catenin pathway by targeting Gsk3ß in ALDHA1+ colorectal cancer stem cells. By blocking Wnt/ß-catenin pathway, we implied that ABCG2 lies downstream of Wnt/ß-catenin pathway. ABCG2 was further demonstrated to contribute cisplatin resistance in ALDHA1+ colorectal cancer stem cells and can be regulated by miR-199a/b. Thus, our data suggested that upregulation of miR-199a/b in ALDHA1+ colorectal cancer stem cells contributed to cisplatin resistance via Wnt/ß-catenin-ABCG2 signaling, which sheds new light on understanding the mechanism of cisplatin resistance in colorectal cancer stem cells and facilitates the development of potential therapeutics against colorectal cancer.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias Colorretais/tratamento farmacológico , MicroRNAs/biossíntese , Proteínas de Neoplasias/genética , beta Catenina/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/administração & dosagem , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Stem Cells ; 33(1): 35-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186497

RESUMO

The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR-CSCs.


Assuntos
Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Análise Espectral Raman/métodos , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Humanos , Gotículas Lipídicas , Camundongos , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt
8.
J Nutr Biochem ; 125: 109551, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134973

RESUMO

Cancer stem cells (CSCs) are known to contribute to the progression of colorectal cancer (CRC). However, understanding of the molecular mechanisms and key factors involved in CRC is still insufficient to identify therapeutic targets against colorectal CSCs. In an effort to identify such mechanisms, we conducted bioinformatics analyses to evaluate the expression patterns in tumor and normal colorectal tissues, leading us to focus on the role of the ZNF217/Notch1 axis in mediating stem cell properties in CRC. Our findings revealed that ZNF217 overexpression activated self-renewal ability, expression of colorectal CSC markers, and Notch signaling in CRC. Dual-luciferase reporter assay suggested a role for ZNF217 in targeting Notch1 to activate Notch signaling. We observed that the promotional effects of Notch signaling, as well as CSC markers, under ZNF217 overexpression were attenuated after Notch1 knockdown. In addition to in vitro data, our in vivo results confirmed the inhibitory effect of sulforaphane on the tumorigenicity of CSCs, depicted the suppressive role of sulforaphane on colorectal CSCs mediated by the ZNF217/Notch1 axis, thereby providing new targetable vulnerabilities and therapeutic strategies for CRC.


Assuntos
Neoplasias Colorretais , Isotiocianatos , Transdução de Sinais , Sulfóxidos , Humanos , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Neoplasias Colorretais/patologia , Proliferação de Células , Transativadores/metabolismo
9.
World J Stem Cells ; 16(2): 207-227, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455101

RESUMO

BACKGROUND: Colorectal cancer stem cells (CCSCs) are heterogeneous cells that can self-renew and undergo multidirectional differentiation in colorectal cancer (CRC) patients. CCSCs are generally accepted to be important sources of CRC and are responsible for the progression, metastasis, and therapeutic resistance of CRC. Therefore, targeting this specific subpopulation has been recognized as a promising strategy for overcoming CRC. AIM: To investigate the effect of VX-509 on CCSCs and elucidate the underlying mechanism. METHODS: CCSCs were enriched from CRC cell lines by in conditioned serum-free medium. Western blot, Aldefluor, transwell and tumorigenesis assays were performed to verify the phenotypic characteristics of the CCSCs. The anticancer efficacy of VX-509 was assessed in HCT116 CCSCs and HT29 CCSCs by performing cell viability analysis, colony formation, sphere formation, flow cytometry, and western blotting assessments in vitro and tumor growth, immunohistochemistry and immunofluorescence assessments in vivo. RESULTS: Compared with parental cells, sphere cells derived from HCT116 and HT29 cells presented increased expression of stem cell transcription factors and stem cell markers and were more potent at promoting migration and tumorigenesis, demonstrating that the CRC sphere cells displayed CSC features. VX-509 inhibited the tumor malignant biological behavior of CRC-stem-like cells, as indicated by their proliferation, migration and clonality in vitro, and suppressed the tumor of CCSC-derived xenograft tumors in vivo. Besides, VX-509 suppressed the CSC characteristics of CRC-stem-like cells and inhibited the progression of epithelial-mesenchymal transition (EMT) signaling in vitro. Nodal was identified as the regulatory factor of VX-509 on CRC stem-like cells through analyses of differentially expressed genes and CSC-related database information. VX-509 markedly downregulated the expression of Nodal and its downstream phosphorylated Smad2/3 to inhibit EMT progression. Moreover, VX-509 reversed the dedifferentiation of CCSCs and inhibited the progression of EMT induced by Nodal overexpression. CONCLUSION: VX-509 prevents the EMT process in CCSCs by inhibiting the transcription and protein expression of Nodal, and inhibits the dedifferentiated self-renewal of CCSCs.

10.
Exp Hematol Oncol ; 13(1): 6, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254219

RESUMO

Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/ß-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.

11.
Heliyon ; 10(5): e27159, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468952

RESUMO

Colorectal cancer (CRC) is one of the most common cancers and the second most deadly cancer across the globe. Colorectal cancer stem cells (CCSCs) fuel CRC growth, metastasis, relapse, and chemoresistance. A complete understanding of the modulatory mechanisms of CCSC biology is essential for developing efficacious CRC treatment. In the current study, we characterized the expression and function of GTP binding protein 2 (GTPBP2) in a chemical-induced mouse CRC model. We found that GTPBP2 was expressed at a higher level in CD133+CD44+ CCSCs compared with other CRC cells. Using a lentivirus-based Cas9/sgRNA system, GTPBP2 expression was ablated in CRC cells in vitro. GTPBP2 deficiency caused the following effects on CCSCs: 1) Significantly accelerating proliferation and increasing the proportions of cells at G1, S, and G2/M phase; 2) Impairing resistance to 5-Fluorouracil; 3) Weakening self-renewal but not impacting cell migration. In addition, GTPBP2 deficiency remarkably decreased ß-catenin expression while increasing ß-catenin phosphorylation in CCSCs. These effects of GTPBP2 were present in CCSCs but not in other CRC cell populations. The Wnt agonist SKL2001 completely abolished these changes in GTPBP2-deficient CCSCs. When GTPBP2-deficient CCSCs were implanted in nude mice, they exhibited consistent changes compared with GTPBP2-expressing CCSCs. Collectively, this study indicates that GTPBP2 positively modulates Wnt signaling to reinforce the quiescence, self-renewal, and chemoresistance of mouse CCSCs. Therefore, we disclose a novel mechanism underlying CCSC biology and GTPBP2 could be a therapeutic target in future CRC treatment.

12.
Oncol Lett ; 27(2): 60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192670

RESUMO

Cell surface markers are most widely used in the study of cancer stem cells (CSCs). However, cell surface markers that are safely and stably expressed in CSCs have yet to be identified. Colonic CSCs express leukocyte CD14. CD14 binding to the ligand lipopolysaccharide (LPS) is involved in the inflammatory response via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway. TLR4 and MyD88 have been reported to promote the proliferation, metastasis and tumorigenicity of colon cancer cells, which is consistent with the characteristics of CSCs. In the present study, the proposed experimental method to detect cell proliferation, metastasis and tumorigenesis was used to confirm that, under LPS stimulation, CD14 promoted the proliferation, migration and tumorigenesis of colonic CSCs via the TLR4/MyD88 signaling pathway. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess the proliferation and migration of the cells. Colony formation and nude mouse xenograft assays were used to assess the capacity of cells to form tumors. Using western blotting and reverse transcription-quantitative PCR, the mRNA and protein levels of CD14, TLR4 and MyD88 were examined. It was confirmed that CD14 promoted the proliferation, metastasis and tumorigenesis of colon CSCs in response to LPS stimulation via the TLR4/MyD88 signaling pathway, and CD14+ colon cancer cells were successfully isolated and sorted. According to the results of proliferation assay, it was determined that CD14 regulated the LPS-induced proliferation of colon CSCs. CD14, TLR4 and MyD88 protein and mRNA expression was upregulated in colon CSCs in response to LPS stimulation. This indicates a potential novel target for colon CSC-related studies.

13.
3 Biotech ; 13(10): 327, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37663749

RESUMO

Bevacizumab is the standard treatment for colorectal cancer (CRC) in the advanced stage. However, poor diagnosis identified due to the bevacizumab resistance in many CRC patients. Previous studies have found that CRC stem cells (CCSCs) and interleukin 22 (IL-22) are involved in the resistance of bevacizumab, however, the mechanism of remains unclear. In this study, we established the bevacizumab drug-resistant cell line HCT-116-R by concentration gradient method, and the cell viability was detected by CCK-8 assay. The resistance of bevacizumab in CRC cell lines HCT-116-R was identified by characterizing epithelial-mesenchymal transition (EMT). Additionally, HCT-116-R cell lines were isolated from CCSCs and their tumorigenicity was validated in nude mice. We observed that that compared with the matched group, the expression of IL-22, IL-22R, STAT3, and GP130 in drug-resistant cells increased distinctly, with blocked IL-22 cells were successfully constructed by lentiviral interference. The level of proteins in stem cell landmarks (EpCAM, CD133), and stem cell landmarks (Oct4, Sox2) was identified by western blotting. Furthermore, the IL-22 role was evaluated by xenograft model. We found that short hairpin RNA (shRNA) suppression of IL-22 expression can restore the sensitivity of drug-resistant CCSCs to bevacizumab, Moreover, xenograft tumor models show that suppression of IL-22 can increase the anti-tumor influence of bevacizumab. In summary, we demonstrated that CCSCs play a major part in bevacizumab-resistant CRC. Inhibiting the signaling pathway of IL-22/STAT3 can improve the anti-tumor influence on bevacizumab in vitro and in vivo. Thus, IL-22 may represent a new anti-bevacizumab target in CRC.

14.
World J Stem Cells ; 15(5): 281-301, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37342226

RESUMO

Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.

15.
Pharmaceutics ; 15(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140103

RESUMO

Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.

16.
Cancers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174049

RESUMO

Adult stem cells lie at the crossroads of tissue repair, inflammation, and malignancy. Intestinal microbiota and microbe-host interactions are pivotal to maintaining gut homeostasis and response to injury, and participate in colorectal carcinogenesis. Yet, limited knowledge is available on whether and how bacteria directly crosstalk with intestinal stem cells (ISC), particularly cancerous stem-like cells (CR-CSC), as engines for colorectal cancer initiation, maintenance, and metastatic dissemination. Among several bacterial species alleged to initiate or promote colorectal cancer (CRC), the pathobiont Fusobacterium Nucleatum has recently drawn significant attention for its epidemiologic association and mechanistic linkage with the disease. We will therefore focus on current evidence for an F. nucleatum-CRCSC axis in tumor development, highlighting the commonalities and differences between F. nucleatum-associated colorectal carcinogenesis and gastric cancer driven by Helicobacter Pylori. We will explore the diverse facets of the bacteria-CSC interaction, analyzing the signals and pathways whereby bacteria either confer "stemness" properties to tumor cells or primarily target stem-like elements within the heterogeneous tumor cell populations. We will also discuss the extent to which CR-CSC cells are competent for innate immune responses and participate in establishing a tumor-promoting microenvironment. Finally, by capitalizing on the expanding knowledge of how the microbiota and ISC crosstalk in intestinal homeostasis and response to injury, we will speculate on the possibility that CRC arises as an aberrant repair response promoted by pathogenic bacteria upon direct stimulation of intestinal stem cells.

17.
J Nutr Biochem ; 107: 109067, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35609851

RESUMO

Cancer stem cells (CSCs) play a key role in cancer initiation, development, metastasis, and recurrence. Previously, we found that sulforaphane (SFN), a natural compound obtained from cruciferous vegetables, inhibited colorectal CSCs via the downregulation of TAp63α. However, the role of ΔNp63α, another critical isoform of p63 which has been considered to contribute to cancer progression, in SFN-mediated colorectal CSCs inhibition remains unclear. Here, we showed that ΔNp63α expression was enhanced in sphere-forming colorectal cancer cells. Overexpression of ΔNp63α promoted the properties of CSCs, while downregulation of ΔNp63α suppressed those properties. Besides, ΔNp63α was found to activate the transcription of core CSCs genes including Nanog, Oct4, and Sox2. Furthermore, in vitro and in vivo experiments illustrated the regulatory effects of SFN on ΔNp63α and colorectal CSCs. These findings suggested for the first time that ΔNp63α activated the transcription of Nanog, Oct4, Sox2 and mediated the interventional effects of SFN on colorectal CSCs, thus providing a novel mechanism by which SFN inhibits colorectal CSCs.


Assuntos
Neoplasias Colorretais , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Isotiocianatos/farmacologia , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/farmacologia , Sulfóxidos/farmacologia
18.
Eur J Pharmacol ; 929: 175112, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772568

RESUMO

PURPOSE: Targeting cancer stem cells (CSCs) may be an efficacious strategy against cancer. We were devoted to exploring the role of neogambogic acid in characteristics and growth of colorectal CSCs. METHODS: SW480 and HCT116 cells were treated with neogambogic acid at different concentrations and transfected with siDLK1 and pcDNA3.1-DLK1 plasmids. The effect of neogambogic acid on the viability of SW480 and HCT116 cells was assessed by MTT assay. Spheroid formation assay was adopted to enrich colorectal CSCs from SW480 and HCT116 cells. The effect of neogambogic acid on colony number, aldehyde dehydrogenase (ALDH) level, apoptosis and cell cycle of SW480 and HCT116 CSCs was detected by colony formation and flow cytometry assays. The expressions of CSC markers, proliferation marker (proliferation nuclear antigen (PCNA)), apoptosis markers (cleaved caspase-3, cleaved caspase-9), Wnt/ß-catenin pathway markers (P-GSK3ß, GSK3ß, ß-catenin and Wnt) and DLK1 were determined by qRT-PCR or Western blot. RESULTS: Neogambogic acid suppressed viability, the spheroid formation ability and the levels of CSC markers in colorectal cancer (CRC) cells, accompanied with inhibition of colony-formation and ALDH level, apoptosis induction and G0/G1 phase arrest. Furthermore, neogambogic acid inhibited expressions of PCNA, P-GSK3ß, P-GSK3ß/GSK3ß, ß-catenin and Wnt, but promoted those of cleaved caspase-3, cleaved caspase-9 and GSK3ß in colorectal CSCs. DLK1 silencing caused opposite results. DLK1 overexpression abrogated the effects of neogambogic acid on colorectal CSCs. CONCLUSION: Neogambogic acid could be an efficacious natural compound targeting colorectal CSCs via inhibition of DLK1 and Wnt/ß-catenin pathway. Thus, neogambogic acid may be an attractive agent against CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas , Antígeno Nuclear de Célula em Proliferação/metabolismo , Via de Sinalização Wnt , Xantenos , beta Catenina/metabolismo
19.
Phytomedicine ; 103: 154234, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689903

RESUMO

BACKGROUND: The Modified Shenlingbaizhu Decoction (MSD) utilizes various phytomedicines has been applied to treat colorectal cancer (CRC). Colorectal cancer stem cells (CSCs) have proven to be tightly associated with CRC progression and metastasis. The mechanism of MSD's inhibitory effect on CSCs has not been determined. PURPOSE: To figure out how MSD inhibits the pluripotency of CSCs and impedes the EMT program. METHODS: The ingredients of MSD extracts were characterized by high-performance liquid chromatography (HPLC). BALB/c-nu mice were transplanted into EGFP labeled SW480 CRC cells and the tumor weight and volume were recorded before and after various doses of MSD treatment. The concentration of TGF-ß1 was quantified with an Enzyme-linked immunosorbent assay. To delineate the logical relationship between EMT and CSCs regulated by MSD, TGF-ß/Smad inhibitor and activator were adopted in tumor-bearing mice and diverse CRC cell lines. Cancer stem cell markers were analyzed by flow cytometry. In vitro analysis of cell motility and viability were done using CCK-8, wound healing, and invasion assay. Immunohistochemistry (IHC) and western blotting (WB) were used for detecting protein expression. The collected results were statistically analyzed with GraphPad Prism 8.0. RESULTS: MSD treatment significantly reduced the size of colorectal cancer tumors and lowered the serum content of TGF-ß1 in mice. Importantly, MSD markedly reduced the expression of pluripotent factors and depressed CD133+ stem cells in the tumor tissues. The TGF-ß/Smad inhibitor neutralized the EMT signaling and lowered the pluripotency by dephosphorylation of SMAD2/3. Similarly, MSD attenuated the pluripotency by limiting TGF-ß/Smad signaling-induced EMT in vivo. MSD inhibited colorectal cancer cell proliferation, migration, and invasion. CONCLUSIONS: MSD inhibits the growth of colorectal cancer. It dampens the pluripotency of CSCs by repressing the TGF-ß-induced EMT program.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Células-Tronco Neoplásicas , Células-Tronco Pluripotentes , Fator de Crescimento Transformador beta1 , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fitoterapia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/sangue
20.
J Cancer ; 12(22): 6629-6639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659553

RESUMO

Cancer stem cells (CSCs) are characterized by self-renewal and unlimited proliferation, providing a basis for tumor occurrence, metastasis, and recurrence. Because CSCs are highly resistant to conventional chemotherapy and radiotherapy, various immunotherapies, particularly chimeric antigen receptor T cell (CAR-T) therapy and dendritic cell (DC)-based vaccine therapy, are currently being developed. Accordingly, in this study, we evaluated programmed cell death ligand-1 (PD-L1) expression in colorectal CSCs (CCSCs) and non-CCSCs and designed a combination immunotherapy synchronously utilizing PD-L1-CAR-T cells together with CCSC-DC vaccine-sensitized T cells for the treatment of colorectal cancer. PD-L1-CAR-T cells specifically recognized the PD-L1 molecule on CCSCs by binding to the extracellular domain of programmed cell death-1. The CCSC-DC vaccine was prepared using CCSC lysates. We found that aldehyde dehydrogenase 1 (ALDH1)-positive CCSCs were abundant in samples from patient tumor tissues and cancer cell lines. Moreover, PD-L1 was highly expressed in ALDH1-positive CCSCs compared with that in non-CCSCs. Monotherapy with PD-L1-CAR-T cells or CCSC-DC vaccine only elicited moderate tumor remission both in vitro and in vivo. However, combination therapy markedly killed cancer cells and relieved the tumor burden in mice. Our findings may provide a novel strategy for the clinical treatment of colorectal malignancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA