Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genomics ; 116(1): 110771, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147941

RESUMO

The complex evolutionary patterns in the mitochondrial genome (mitogenome) of the most species-rich shark order, the Carcharhiniformes (ground sharks) has led to challenges in the phylogenomic reconstruction of the families and genera belonging to the order, particularly the family Triakidae (houndsharks). The current state of Triakidae phylogeny remains controversial, with arguments for both monophyly and paraphyly within the family. We hypothesize that this variability is triggered by the selection of different a priori partitioning schemes to account for site and gene heterogeneity within the mitogenome. Here we used an extensive statistical framework to select the a priori partitioning scheme for inference of the mitochondrial phylogenomic relationships within Carcharhiniformes, tested site heterogeneous CAT + GTR + G4 models and incorporated the multi-species coalescent model (MSCM) into our analyses to account for the influence of gene tree discordance on species tree inference. We included five newly assembled houndshark mitogenomes to increase resolution of Triakidae. During the assembly procedure, we uncovered a 714 bp-duplication in the mitogenome of Galeorhinus galeus. Phylogenetic reconstruction confirmed monophyly within Triakidae and the existence of two distinct clades of the expanded Mustelus genus. The latter alludes to potential evolutionary reversal of reproductive mode from placental to aplacental, suggesting that reproductive mode has played a role in the trajectory of adaptive divergence. These new sequences have the potential to contribute to population genomic investigations, species phylogeography delineation, environmental DNA metabarcoding databases and, ultimately, improved conservation strategies for these ecologically and economically important species.


Assuntos
Genoma Mitocondrial , Tubarões , Feminino , Humanos , Gravidez , Animais , Filogenia , Placenta , Evolução Biológica , Tubarões/genética
2.
Mol Biol Rep ; 51(1): 298, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341808

RESUMO

BACKGROUND: Brachiopods are a phylum of marine invertebrates with over 10,000 fossil species. Today, there are fewer than 500 extant species assigned to the class Articulata or Inarticulata and for which knowledge of evolutionary genetics and genomics is still poor. Until now, complete mitogenome sequences of two inarticulate species and four articulate species were available. METHODS AND RESULTS: The complete mitogenome of the inarticulate brachiopod species Lingula reevii (20,778 bp) was obtained by using next generation sequencing. It contains 12 protein-coding genes (the annotation of atp8 is unsure), two ribosomal RNA genes, 26 transfer RNA genes, and one supernumerary ORF that is also conserved in the inarticulate species Lingula anatina. It is hypothesized that this ORF could represent a Lingula-specific mtORFan gene (without obvious homology to other genes). Comparative mitogenomics indicate the mitochondrial gene order of L. reevii is unique among brachiopods, and that compared to articulate species, inarticulate species exhibit massive mitogenome rearrangements, deviant ATP8 protein sequences and supernumerary ORFs, possibly representing species- or lineage-specific mtORFan genes. CONCLUSION: The results of this study enrich genetics knowledge of extant brachiopods, which may eventually help to test hypotheses about their decline.


Assuntos
Genoma Mitocondrial , Invertebrados , Animais , Invertebrados/genética , Evolução Biológica , Genômica , Genes Mitocondriais , Sequência de Aminoácidos , Genoma Mitocondrial/genética , Filogenia
3.
Arch Insect Biochem Physiol ; 114(4): e22058, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853569

RESUMO

The click-beetles (Elateridae) are a species-rich beetle family that is easily recognizable. They are distributed in all zoogeographical regions with over 11,000 species. Comparative studies of the structural characteristics of mitochondrial genomes (mitogenomes), as well as phylogenetic relationships of click-beetles, can improve our understanding of mitogenomic evolution. In this study, we determined four mitogenomes from Elateridae by next-generation sequencing. The four mitogenomes were 16,005 to 16,930 bp in length with 37 typical genes and a control region (A + T-rich region). Combined with previously reported elaterid mitogenomes, all PCGs initiate with either the standard start codon of ATN or TTG. According to the nonsynonymous/synonymous mutation ratio (Ka/Ks) of all PCGs, the highest and the lowest evolutionary rates were found for atp8 and cox1, respectively. Among the control regions of the four mitogenomes, several different patterns and numbers of tandem repeats were identified, which was the primary cause of the length variation in control regions. Phylogenetic analyses were conducted based on 13 protein-coding genes and two ribosomal RNA genes from 33 species of Elateridae and two outgroups. The Bayesian inference and maximum likelihood trees had an identical topological structure. The monophyly of Cardiophorinae, Agrypninae and Elaterinae was recovered with high support in all topologies, and the Tetralobinae was placed as the earliest branch in the Elateridae. Expanding the availability of mitogenomic and genomic data from a broader range of click-beetles could provide more clarity on the disputed relationships among subfamilies within Elateridae.


Assuntos
Besouros , Genoma Mitocondrial , Animais , Filogenia , Besouros/genética , Teorema de Bayes , Evolução Molecular
4.
Arch Insect Biochem Physiol ; 114(2): 1-15, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36915951

RESUMO

Thrips parvispinus is a serious sucking pest on a number of economically important crops in the oriental region. It has gained importance recently for its drastic range extension distribution as an invasive pest. Here, the complete mitochondrial genome (15,067 bp) of Thrips parvispinus was sequenced and characterized. It possesses 37 genes and the putative noncoding region is duplicated. Comparative analyses of nucleotide diversity, skewness, codon usage bias, and selection pressure in mitochondrial protein-coding genes of the available 31 thrips mitogenomes (24 Terebrantia + 7 Tubulifera) were performed. Phylogenetic analysis showed a sister relationship of T. parvispinus to the clade (T. florum + T. hawaiiensis). Phylogenetic analyses formed the monophyly of subfamilies Phlaeothripinae and Idolothripinae within the family Phlaeothripidae (Suborder Tubulifera). Low nucleotide diversity was indicative of reversal of strand asymmetry in the Tubulifera. Neutrality analysis showed that directional mutation plays a major role in shaping codon usage bias in both suborders. Principal component analysis indicated distinct codon usage patterns in each suborder. Our data suggested weaker selection constrains on Terebrantia than in the Tubulifera. More tubuliferan mitogenomes are required to resolve previous classification hypotheses and elucidate genome evolution in these two suborders.


Assuntos
Genoma Mitocondrial , Tisanópteros , Animais , Tisanópteros/genética , Filogenia , Sequência de Bases , Nucleotídeos
5.
Curr Genomics ; 24(4): 263-272, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38169623

RESUMO

Background: The Charadriiformes provide a good source for researching evolution owing to their diverse distribution, behavior, morphology, and ecology. However, in the Charadrii, family-level relationships remain understudied, and the monophyly of Charadriidae is also a subject of controversy. Methods: In the present study, we generated complete mitogenomes for two species, Charadrius leschenaultii and Charadrius mongolus, which were found to be 16,905 bp and 16,844 bp in length, respectively. Among the 13 protein codon genes, we observed variation in the rate of non-synonymous substitution rates, with the slowest rate found in COI and the fastest rate observed in ATP8. The Ka/Ks ratio for all Charadriidae species was significantly lower than one, which inferred that the protein-coding genes underwent purifying selection. Results: Phylogenetic analysis based on the genes of Cyt b, 12S and ND2 revealed that the genus Pluvialis is the sister group of three families (Haematopodidae, Ibidorhynchidae, Recurvirostridae). However, the phylogenetic analysis based on complete mitogenomes indicated that the genus Pluvialis is within the Charadriidae family. Conclusion: This study highlights the importance of carefully selecting the number of genes used to obtain accurate estimates of the species tree. It also suggests that relying on partial mtDNA genes with fast-evolving rates may lead to misleading results when resolving the Pluvialis sister group. Future research should focus on sequencing more mitogenomes at different taxonomic levels to gain a better understanding of the features and phylogenetic relationships within the Charadriiformes order.

6.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948138

RESUMO

Stachybotrys chartarum is one of the world's ten most feared fungi within the family Stachybotryaceae, although to date, not a single mitogenome has been documented for Stachybotryaceae. Herein, six mitogenomes of four different species in Stachybotryaceae are newly reported. The S. chartarum mitogenome was 30.7 kb in length and contained two introns (one each in rnl and cox1). A comparison of the mitogenomes of three different individuals of S. chartarum showed few nucleotide variations and conservation of gene content/order and intron insertion. A comparison of the mitogenomes of four different Stachybotryaceae species (Memnoniella echinata, Myrothecium inundatum, S. chartarum, and S. chlorohalonata), however, revealed variations in intron insertion, gene order/content, and nad2/nad3 joining pattern. Further investigations on all Hypocreales species with available mitogenomes showed greater variabilities in gene order (six patterns) and nad2/nad3 joining pattern (five patterns) although a dominant pattern always existed in each case. Ancestral state estimation showed that in each case the dominant pattern was always more ancestral than those rare patterns. Phylogenetic analyses based on mitochondrion-encoded genes supported the placement of Stachybotryaceae in Hypocreales. The crown age of Stachybotryaceae was estimated to be approximately the Early Cretaceous (141-142 Mya). This study greatly promotes our understanding of the evolution of fungal species in Hypocreales.


Assuntos
Evolução Molecular , Genoma Fúngico , Genoma Mitocondrial , Hypocreales/genética , Filogenia , Stachybotrys/genética
7.
Appl Microbiol Biotechnol ; 103(14): 5797-5809, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31089765

RESUMO

The fungal order Ophiostomatales contains numerous species important in medical fields, agriculture, and forestry, and several species have had available mitogenome information. The nuclear genome of the entomopathogenic fungus Sporothrix insectorum has been reported, while its mitogenome remains unknown. Herein, we firstly described the mitogenome of S. insectorum RCEF 264 and then compared Ophiostomatales mitogenomes from both interspecific and intraspecific perspectives. The mitogenome of S. insectorum RCEF 264 was 31,454 bp in length, containing typical fungal mitochondrial genes plus rnpB. Four group I introns interrupted rnl and cox1. Phylogenetic analyses confirmed the placement of S. insectorum RCEF 264 in Ophiostomatales. Comparison of mitogenomes among seven Ophiostomatales species revealed conserved gene contents and a high synteny, although there were also some differences among them. Their mitogenomes showed more than two-fold variations (26.6-65.1 kb) in size, with a total of 37 intron insertional loci from 11 genes (1-25 introns per species). The sole intron shared by all species was an rps3-encoding intron in rnl (mL2450), and this intron-based phylogeny was highly consistent with those constructed using mitochondrial/nuclear genes, suggesting convergent evolution of this intron with Ophiostomatales species. The dendrogram based on presence/absence patterns at all intron loci was quite different from those based on mitochondrial/nuclear genes. Comparison of mitogenomes among two to three intraspecific individuals in Ophiostoma novo-ulmi subsp. novo-ulmi and Sporothrix schenckii revealed mitogenome size variations due to single-nucleotide polymorphisms (SNPs) and indels but without fluctuation of intron numbers for each species. This study greatly enhanced our understanding of mitogenome evolution in Ophiostomatales.


Assuntos
Evolução Molecular , Proteínas Fúngicas/genética , Genoma Mitocondrial , Ophiostomatales/genética , Sporothrix/genética , DNA Mitocondrial/genética , Genes Mitocondriais , Íntrons/genética , Mitocôndrias/genética , Mutagênese Insercional , Filogenia
8.
BMC Genomics ; 19(1): 53, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338715

RESUMO

BACKGROUND: Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. RESULTS: We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks < 1) across the mitochondrial genome, which is consistent with the hypothesis that purifying selection is constraining mitogenome evolution to maintain Oxidative phosphorylation (OXPHOS) proteins and functionality. Pairwise species maximum-likelihood analyses of selection at codon sites suggest positive selection has occurred on ATP8 (Fixed-Effects Likelihood, FEL) and ND4 (Single Likelihood Ancestral Counting, SLAC) in all penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. CONCLUSIONS: These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be particularly useful for developing predictive models of how these species may respond to severe climatic changes in the future.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Seleção Genética , Spheniscidae/genética , Animais , DNA Mitocondrial/química , Interação Gene-Ambiente , Genômica
9.
PeerJ ; 12: e18190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39421424

RESUMO

Background: The Mephitidae is a family of skunks and stink-badgers that includes 12 extant species in four genera, namely, Mydaus, Conepatus, Mephitis and Spilogale. Mydaus is the only genus within Mephitidae found outside the American continent, with its distribution limited to the islands of Borneo, Indonesia and Philippines. There are two extant species of Mydaus i.e., javanensis and marchei. Currently, complete mitogenomes are unavailable for either species. Here, we present the characterization of the first complete mitogenome for the Sunda stink-badger (Mydaus javanensis) from the island of Borneo. Methods: Muscle tissue was obtained and the DNA was sequenced using a combination of Illumina Barcode Tagged Sequence (BTSeq) and Sanger sequencing techniques. The genome was annotated with MITOS and manually checked for accuracy. A circular map of the mitogenome was constructed with Proksee. Relative synonymous codon usage (RSCU) and codon frequency were calculated using MEGA-X. The protein coding genes (PCGs) were aligned with reference sequences from GenBank and used for the construction of phylogenetic trees (maximum liklihood (ML) and Bayesian inference (BI)). Additionally, due to the lack of available complete genomes in public databases, we constructed another tree with the cyt b gene. Results: The complete circular mitogenome was 16,391 base pairs in length. It comprises the typical 13 protein-coding genes, 22 tRNAs, two ribosomal RNA genes, one control region (CR) and an L-strand replication origin (OL). The G+C content was 38.1% with a clear bias towards A and T nucleotides. Of the 13 PGCs, only ND6 was positioned in the reverse direction, along with five other tRNAs. Five PCGs had incomplete stop codons and rely on post-transcriptional polyadenylation (TAA) for termination. Based on the codon count, Leucine was the most common amino acid (589), followed by Threonine (332) and Isoleucine (325). The ML and BI phylogenetic trees, based on concatenated PCGs and the cyt b gene, respectively, correctly clustered the species with other members of the Mephitidae family but were unique enough to set it apart from Conepatus, Mephitis and Spilogale. The results confirm Mydaus as a member of the mephitids and the mitogenome will be useful for evolutionary analysis and conservation of the species.


Assuntos
Genoma Mitocondrial , Mustelidae , Filogenia , Genoma Mitocondrial/genética , Bornéu , Animais , Mustelidae/genética , Análise de Sequência de DNA , RNA de Transferência/genética
10.
Parasit Vectors ; 17(1): 253, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863074

RESUMO

BACKGROUND: Fleas are one of the most common and pervasive ectoparasites worldwide, comprising at least 2500 valid species. They are vectors of several disease-causing agents, such as Yersinia pestis. Despite their significance, however, the molecular genetics, biology, and phylogenetics of fleas remain poorly understood. METHODS: We sequenced, assembled, and annotated the complete mitochondrial (mt) genome of the rodent flea Nosopsyllus laeviceps using next-generation sequencing technology. Then we combined the new mitogenome generated here with mt genomic data available for 23 other flea species to perform comparative mitogenomics, nucleotide diversity, and evolutionary rate analysis. Subsequently, the phylogenetic relationship within the order Siphonaptera was explored using the Bayesian inference (BI) and maximum likelihood (ML) methods based on concentrated data for 13 mt protein-coding genes. RESULTS: The complete mt genome of the rodent flea N. laeviceps was 16,533 base pairs (bp) in a circular DNA molecule, containing 37 typical genes (13 protein-coding genes, 22 transfer RNA [tRNA] genes, and two ribosomal RNA [rRNA] genes) with one large non-coding region (NCR). Comparative analysis among the order Siphonaptera showed a stable gene order with no gene arrangement, and high AT content (76.71-83.21%) with an apparent negative AT and GC skew except in three fleas Aviostivalius klossi bispiniformis, Leptopsylla segnis, and Neopsylla specialis. Moreover, we found robust evidence that the cytochrome c oxidase subunit 1 (cox1) gene was the most conserved protein-coding gene (Pi = 0.15, non-synonymous/synonymous [Ka/Ks] ratio = 0.13) of fleas. Phylogenomic analysis conducted using two methods revealed different topologies, but both results strongly indicated that (i) the families Ceratophyllidae and Leptopsyllidae were paraphyletic and were the closest to each other, and (ii) the family Ctenophthalmidae was paraphyletic. CONCLUSIONS: In this study, we obtained a high-quality mt genome of the rodent flea N. laeviceps and performed comparative mitogenomics and phylogeny of the order Siphonaptera using the mt database. The results will enrich the mt genome data for fleas, lay a foundation for the phylogenetic analysis of fleas, and promote the evolutionary analysis of Siphonaptera.


Assuntos
Genoma Mitocondrial , Filogenia , Sifonápteros , Animais , Sifonápteros/genética , Sifonápteros/classificação , Genoma Mitocondrial/genética , Roedores , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Transferência/genética
11.
Data Brief ; 54: 110280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962188

RESUMO

Here, we present, for the first time, the Ion TorrentⓇ next-generation sequencing (NGS) data for five houndsharks (Chondrichthyes: Triakidae), which include Galeorhinus galeus (number of bases pairs (bp) 17,487; GenBank accession number ON652874), Mustelus asterias (16,708; ON652873), Mustelus mosis (16,755; ON075077), Mustelus palumbes (16,708; ON075076), and Triakis megalopterus (16,746; ON075075). All assembled mitogenomes encode 13 protein-coding genes (PCGs), two ribosomal (r)RNA genes, and 22 transfer (t)RNA genes (tRNALeu and tRNASer are duplicated), except for G. galeus which contains 23 tRNA genes where tRNAThr is duplicated. The data presented in this paper can assist other researchers in further elucidating the diversification of triakid species and the phylogenetic relationships within Carcharhiniformes (groundsharks) as mitogenomes accumulate in public repositories.

12.
Microorganisms ; 12(10)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39458362

RESUMO

The species of Purpureocillium are cosmopolitan and multitrophic fungi that can infect a wide range of invertebrate hosts. This study reports the mitogenome of P. atypicola, a specialized spider pathogenic fungus. The 112,465 bp mitogenome encoded genes typically found in fungal mitogenomes, and a total of 52 introns inserted into seven genes. A comparison with three other Purpureocillium species revealed significant differences in length and intron number, primarily due to intron variation; however, there was no dynamic variation in the introns of the cox1 gene within the same species of the Purpureocillium genus. Different mitochondrial protein-coding genes showed variable degrees of genetic differentiation among these species, but they were all under purifying selection. Additionally, frequent intron loss or gain events were detected to have occurred during the evolution of the Ophiocordycipitaceae mitogenomes, yet the gene arrangement remains conserved. A phylogenetic analysis of the combined mitochondrial gene set gave identical and well-supported tree topologies. The estimated age of the crown of Ophiocordycipitaceae and Purpureocillium were around the Early Cretaceous period (127 Mya) and Late Cretaceous period (83 Mya), respectively. The results of this study advance our understanding of the genomics, evolution, and taxonomy of this important fungal group.

13.
Front Genet ; 14: 1137588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144132

RESUMO

Harsh environments (e.g., hypoxia and cold temperatures) of the Qinghai-Tibetan Plateau have a substantial influence on adaptive evolution in various species. Some species in Lycaenidae, a large and widely distributed family of butterflies, are adapted to the Qinghai-Tibetan Plateau. Here, we sequenced four mitogenomes of two lycaenid species in the Qinghai-Tibetan Plateau and performed a detailed comparative mitogenomic analysis including nine other lycaenid mitogenomes (nine species) to explore the molecular basis of high-altitude adaptation. Based on mitogenomic data, Bayesian inference, and maximum likelihood methods, we recovered a lycaenid phylogeny of [Curetinae + (Aphnaeinae + (Lycaeninae + (Theclinae + Polyommatinae)))]. The gene content, gene arrangement, base composition, codon usage, and transfer RNA genes (sequence and structure) were highly conserved within Lycaenidae. TrnS1 not only lacked the dihydrouridine arm but also showed anticodon and copy number diversity. The ratios of non-synonymous substitutions to synonymous substitutions of 13 protein-coding genes (PCGs) were less than 1.0, indicating that all PCGs evolved under purifying selection. However, signals of positive selection were detected in cox1 in the two Qinghai-Tibetan Plateau lycaenid species, indicating that this gene may be associated with high-altitude adaptation. Three large non-coding regions, i.e., rrnS-trnM (control region), trnQ-nad2, and trnS2-nad1, were found in the mitogenomes of all lycaenid species. Conserved motifs in three non-coding regions (trnE-trnF, trnS1-trnE, and trnP-nad6) and long sequences in two non-coding regions (nad6-cob and cob-trnS2) were detected in the Qinghai-Tibetan Plateau lycaenid species, suggesting that these non-coding regions were involved in high-altitude adaptation. In addition to the characterization of Lycaenidae mitogenomes, this study highlights the importance of both PCGs and non-coding regions in high-altitude adaptation.

14.
Mol Ecol Resour ; 23(1): 273-293, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35962787

RESUMO

The collembolan Folsomia candida Willem, 1902, is widely distributed throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However, it is questioned as an ideal "standard" because of differences in reproductive modes and cryptic genetic diversity between strains from various geographical origins. In this study, we obtained two high-quality chromosome-level genomes of F. candida, for a parthenogenetic strain (named FCDK, 219.08 Mb, 25,139 protein-coding genes) and a sexual strain (named FCSH, 153.09 Mb, 21,609 protein-coding genes), reannotated the genome of the parthenogenetic strain reported by Faddeeva-Vakhrusheva et al. in 2017 (named FCBL, 221.7 Mb, 25,980 protein-coding genes) and conducted comparative genomic analyses of the three strains. High genome similarities between FCDK and FCBL based on synteny, genome architecture, mitochondrial and nuclear gene sequences suggest that they are conspecific. The seven chromosomes of FCDK are each 25%-54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related to the broader environmental adaptation of parthenogenetic strains. In addition, FCDK has fewer strain-specific microRNAs than FCSH, and their mitochondrial and nuclear genes have diverged greatly. In conclusion, FCDK/FCBL and FCSH have accumulated independent genetic changes and evolved into distinct species after 10 million years ago. Our work provides important genomic resources for studying the mechanisms of rapidly cryptic speciation and soil arthropod adaptation to soil ecosystems.


Assuntos
Artrópodes , Ecossistema , Animais , Artrópodes/genética , Genoma , Sintenia , Solo , Evolução Molecular , Especiação Genética
15.
Int J Biol Macromol ; 221: 1593-1605, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36116598

RESUMO

The golden-needle mushroom Flammulina filiformis is one of the bulk mushroom products in the world. This study obtained complete mitogenomes of 44 wild isolates collected from nine provinces and two artificially bred cultivars of F. filiformis, together with three Flammulina rossica isolates and one Flammulina fennae isolate for comparison. The mitogenome of F. filiformis ranged from 83,540 bp to 90,938 bp, consisting of 14 conserved protein-coding genes (PCGs), two rRNA genes, and 25 tRNA genes. To the best of our knowledge, it contained the highest proportion of intergenic regions compared to the other known Basidiomycota mitogenomes. Introns and intergenic regions were two major contributing factors to the total size of the F. filiformis mitogenome. The conserved PCG cox3 is located in an intron of another conserved PCG, nad5. This is a unique phenomenon in all known fungal mitogenomes. Gain/loss of introns was observed in cox1, nad5, and rnl. Length polymorphism was widely observed in intergenic regions. Accordingly, primers were designed as useful markers for rapid identification of F. filiformis isolates with differentiated mitogenomes. Our findings provide a basis for further studies related to variety identification and population genetics of this economically important mushroom.


Assuntos
Agaricales , Genoma Mitocondrial , Genoma Mitocondrial/genética , Íntrons/genética , DNA Intergênico/genética , Melhoramento Vegetal , Agaricales/genética , Filogenia
16.
Genes (Basel) ; 13(11)2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36360286

RESUMO

Ticks rank second in the world as vectors of disease. Tick infestation is one of the factors threatening the health and survival of giant pandas. Here, we describe the mitogenomes of Ixodes acutitarsus and Ixodes ovatus parasitizing giant pandas, and perform comparative and phylogenetic genomic analyses on the newly sequenced and other available mitogenomes of hard ticks. All six newly determined mitogenomes contain a typical gene component and share an ancient Arthropoda gene arrangement pattern. Our study suggests that I. ovatus is a species complex with high genetic divergence, indicating that different clades of I. ovatus represent distinct species. Comparative mitogenomic analyses show that the average A + T content of Ixodidae mitogenomes is 78.08%, their GC-skews are strongly negative, while AT-skews fluctuate around 0. A large number of microsatellites are detected in Ixodidae mitogenomes, and the main microsatellite motifs are mononucleotide A and trinucleotide AAT. We summarize five gene arrangement types, and identify the trnY-COX1-trnS1-COX2-trnK-ATP8-ATP6-COX3-trnG fragment is the most conserved region, whereas the region near the control region is the rearrangement hotspot in Ixodidae mitogenomes. The phylogenetic trees based on 15 genes provide a very convincing relationship (Ixodes + (Robertsicus + ((Bothriocroton + Haemaphysalis) + (Amblyomma + (Dermacentor + (Rhipicentor + (Hyalomma + Rhipicephalus))))))) with very strong supports. Remarkably, Archaeocroton sphenodonti is embedded in the Haemaphysalis clade with strong supports, resulting in paraphyly of the Haemaphysalis genus, so in-depth morphological and molecular studies are essential to determine the taxonomic status of A. sphenodonti and its closely related species. Our results provide new insights into the molecular phylogeny and evolution of hard ticks, as well as basic data for population genetics assessment and efficient surveillance and control for the giant panda-infesting ticks.


Assuntos
Genoma Mitocondrial , Ixodes , Ixodidae , Ursidae , Animais , Ixodidae/genética , Filogenia , Ixodes/genética , Genoma Mitocondrial/genética
17.
Front Genet ; 13: 974084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186478

RESUMO

The retrolateral tibial apophysis (RTA) clade is the largest spider lineage within Araneae. To better understand the diversity and evolution, we newly determined mitogenomes of ten RTA species from six families and performed a comparative mitogenomics analysis by combining them with 40 sequenced RTA mitogenomes available on GenBank. The ten mitogenomes encoded 37 typical mitochondrial genes and included a large non-coding region (putative control region). Nucleotide composition and codon usage were well conserved within the RTA clade, whereas diversity in sequence length and structural features was observed in control region. A reversal of strand asymmetry in nucleotide composition, i.e., negative AT-skews and positive GC-skews, was observed in each RTA species, likely resulting from mitochondrial gene rearrangements. All protein-coding genes were evolving under purifying selection, except for atp8 whose Ka/Ks was larger than 1, possibly due to positive selection or selection relaxation. Both mutation pressure and natural selection might contribute to codon usage bias of 13 protein-coding genes in the RTA lineage. Phylogenetic analyses based on mitogenomic data recovered a family-level phylogeny within the RTA; {[(Oval calamistrum clade, Dionycha), Marronoid clade], Sparassidae}. This study characterized RTA mitogenomes and provided some new insights into the phylogeny and evolution of the RTA clade.

18.
Mitochondrial DNA B Resour ; 6(9): 2701-2703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34435125

RESUMO

Brachiopods are a clade of marine organisms with a tremendously diverse and abundant fossil record but with fewer than 500 species extant today. Even if a better understanding of their biology and genetics could help to test hypotheses about their impressive decline, knowledge of genetics and evolutionary genomics in extant brachiopods is very poor. Here, we present the complete mitochondrial genome sequence of the inarticulate Glottidia pyramidata, an eastern North American extant representative of the phylum Brachiopoda. Besides the general characteristics of the sequenced mitogenome, we present its unusual features such as deviant ATP8 protein sequence and supernumerary ORFs, and also unique gene order, considering the available genome sequences of other brachiopod species.

19.
Mitochondrion ; 58: 1-13, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582235

RESUMO

The mitochondrion is an organelle found in eukaryote organisms, and it is vital for different cellular pathways. The mitochondrion has its own DNA molecule and, because its genetic content is relatively conserved, despite the variation of size and structure, mitogenome sequences have been widely used as a promising molecular biomarker for taxonomy and evolution in fungi. In this study, the mitogenomes of two fungal species of Agaricomycetes class, Phellinotus piptadeniae and Trametes villosa, were assembled and annotated for the first time. We used these newly sequenced mitogenomes for comparative analyses with other 55 mitogenomes of Agaricomycetes available in public databases. Mitochondrial DNA (mtDNA) size and content are highly variable and non-coding and intronic regions, homing endonucleases (HEGs), and unidentified ORFs (uORFs) significantly contribute to the total size of the mitogenome. Furthermore, accessory genes (most of them as HEGs) are shared between distantly related species, most likely as a consequence of horizontal gene transfer events. Conversely, uORFs are only shared between taxonomically related species, most probably as a result of vertical evolutionary inheritance. Additionally, codon usage varies among mitogenomes and the GC content of mitochondrial features may be used to distinguish coding from non-coding sequences. Our results also indicated that transposition events of mitochondrial genes to the nuclear genome are not common. Despite the variation of size and content of the mitogenomes, mitochondrial genes seemed to be reliable molecular markers in our time-divergence analysis, even though the nucleotide substitution rates of mitochondrial and nuclear genomes of fungi are quite different. We also showed that many events of mitochondrial gene shuffling probably happened amongst the Agaricomycetes during evolution, which created differences in the gene order among species, even those of the same genus. Altogether, our study revealed new information regarding evolutionary dynamics in Agaricomycetes.


Assuntos
Basidiomycota/genética , Genes Fúngicos , Genoma Mitocondrial , Polyporaceae/genética , Códon , DNA Mitocondrial/genética , Íntrons , Fases de Leitura Aberta
20.
Genome Biol Evol ; 8(8): 2544-64, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27503296

RESUMO

Despite the figure of complete bivalve mitochondrial genomes keeps growing, an assessment of the general features of these genomes in a phylogenetic framework is still lacking, despite the fact that bivalve mitochondrial genomes are unusual under different aspects. In this work, we constructed a dataset of one hundred mitochondrial genomes of bivalves to perform the first systematic comparative mitogenomic analysis, developing a phylogenetic background to scaffold the evolutionary history of the class' mitochondrial genomes. Highly conserved domains were identified in all protein coding genes; however, four genes (namely, atp6, nad2, nad4L, and nad6) were found to be very divergent for many respects, notwithstanding the overall purifying selection working on those genomes. Moreover, the atp8 gene was newly annotated in 20 mitochondrial genomes, where it was previously declared as lacking or only signaled. Supernumerary mitochondrial proteins were compared, but it was possible to find homologies only among strictly related species. The rearrangement rate on the molecule is too high to be used as a phylogenetic marker, but here we demonstrate for the first time in mollusks that there is correlation between rearrangement rates and evolutionary rates. We also developed a new index (HERMES) to estimate the amount of mitochondrial evolution. Many genomic features are phylogenetically congruent and this allowed us to highlight three main phases in bivalve history: the origin, the branching of palaeoheterodonts, and the second radiation leading to the present-day biodiversity.


Assuntos
Bivalves/genética , Evolução Molecular , Genoma Mitocondrial , Animais , Bivalves/classificação , Proteínas Mitocondriais/genética , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA