Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Microbiol ; 24(1): 162, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730339

RESUMO

BACKGROUND: Coastal areas are subject to various anthropogenic and natural influences. In this study, we investigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the differences between these coastlines: The Bay of Bengal's shallower depth and lower salinity; upwelling phenomena due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants and debris. RESULTS: The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, random forest regression, and supervised machine learning models classification confirm the diversity of the microbiome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for further study. CONCLUSION: Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities and climate variations on biology of coastal ecosystems and biodiversity.


Assuntos
Bactérias , Baías , Microbiota , Filogenia , RNA Ribossômico 16S , Água do Mar , Aprendizado de Máquina Supervisionado , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbiota/genética , Água do Mar/microbiologia , Índia , Baías/microbiologia , Biodiversidade , DNA Bacteriano/genética , Salinidade , Análise de Sequência de DNA/métodos
2.
Int Microbiol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982990

RESUMO

The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.

3.
Arch Microbiol ; 205(1): 44, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576579

RESUMO

Common scab (CS) caused by pathogenic Streptomyces spp. plays a decisive role in the qualitative and quantitative production of potatoes worldwide. Although the CS pathogen is present in Assam's soil, disease signs and symptoms are less obvious in the landrace Rongpuria potatoes that indicate an interesting interaction between the plant and the geocaulosphere microbial population. Toward this, a comparative metagenomics study was performed to elucidate the geocaulosphere microbiome assemblages and functions of low CS-severe (LSG) and moderately severe (MSG) potato plants. Alpha diversity indices showed that CS occurrence modulated microbiome composition and decreased overall microbial abundances. Functional analysis involving cluster of orthologous groups (COG) too confirmed reduced microbial metabolism under disease incidence. The top-three most dominant genera were Pseudomonas (relative abundance: 2.79% in LSG; 12.31% in MSG), Streptomyces (2.55% in LSG; 5.28% in MSG), and Pantoea (2.30% in LSG; 3.51% in MSG). As shown by the high Pielou's J evenness index, the potato geocaulosphere core microbiome was adaptive and resilient to CS infection. The plant growth-promoting traits and potential antagonistic activity of major taxa (Pseudomonads, non-pathogenic Streptomyces spp., and others) against the CS pathogen, i.e., Streptomyces scabiei, point toward selective microbial recruitment and colonization strategy by the plants to its own advantage. KEGG Orthology analysis showed that the CS infection resulted in high abundances of ATP-binding cassette transporters and a two-component system, ubiquitous to the transportation and regulation of metabolites. As compared to the LSG metagenome, the MSG counterpart had a higher representation of important PGPTs related to 1-aminocyclopropane-1-carboxylate deaminase, IAA production, betaine utilization, and siderophore production.


Assuntos
Microbiota , Solanum tuberosum , Doenças das Plantas , Microbiologia do Solo , Índia
4.
Appl Microbiol Biotechnol ; 105(14-15): 5993-6005, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34272578

RESUMO

Gut microbiota have a significant impact on host physiology and health, and host genetics and diet are considered as two important factors, but it is difficult to discriminate the influence of each single factor (host or diet) on gut microbiota under natural conditions. Moreover, current studies of avian microbiota mainly focus on domestic or captive birds, and it is still uncertain how host and diet take part in changing avian gut microbiota composition, diversity, and function in the wild. Here, high-throughput sequencing of 16S rRNA was used to identify the gut microbiota communities for sympatric wintering Great Bustards and Common Cranes at different diets. The results showed that 8.87% operational taxonomic units (OTUs) were shared among all sampling birds; in contrast, 39.43% of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways were common among all individuals, indicating the existence of gut microbiota conservatism both in microbiota structure and function. Microbiota abundance and diversity differed between Great Bustards and Common Cranes in a specific wintering site, and microbiota variation was detected for the same host species under two different sites, suggesting that the change of gut microbiota was induced by both host and diet. Furthermore, we found that changes of both microbial communities and functional pathways were larger between hosts than those between diets, which revealed that host might be the dominant factor determining microbiota characteristics and function, while diet further drove the divergence of gut microbiota. Gut microbiota functions appeared to be more conserved than bacterial community structure, indicating that different bacteria may function in a similar way, while microbiota OTU diversity might not be necessarily associated with functional diversity. With diet shifting, gut microbiota changed both in terms of microbial communities and functional pathways for the sympatric birds, which implies that avian habitats and their physiological microbiota would be influenced by different farmland management regimes. KEY POINTS: • Gut microbiota can be shaped by both diets and hosts in sympatric species. • Host was the dominant factor shaping the gut microbiota communities and functional pathways. • Gut microbiota were conservative both in structure and in function, but more conservative in function.


Assuntos
Microbiota , Simpatria , Animais , Aves , Dieta , Humanos , RNA Ribossômico 16S/genética
5.
Appl Microbiol Biotechnol ; 103(4): 1823-1835, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30610284

RESUMO

Pu-erh tea is attracting increased attention worldwide because of its unique flavor and health effects, but its impact on the composition and function of the gut microbiota remains unclear. The aim of this study was to investigate the effects of aqueous extracts of fermented (ripe) and non-fermented (raw) Pu-erh teas on the composition and function of the intestinal microbiota of rats with diet-induced obesity. We conducted a comparative metagenomic and meta-proteomic investigation of the microbial communities in cecal samples taken from obese rats treated with or without extracts of raw or ripe Pu-erh teas. By analyzing the composition and diversity of 16S rRNA amplicons and expression profiles of 814 distinct proteins, we found that despite differences in the chemical compositions of raw and ripe Pu-erh teas, administration of either tea at two doses (0.15- and 0.40-g/kg body weight) significantly (P < 0.05) increased microbial diversity and changed the composition of cecal microbiota by increasing the relative abundances of Firmicutes and decreasing those of Bacteroidetes. Community metabolic processes, including sucrose metabolism, glycolysis, and syntheses of proteins, rRNAs, and antibiotics were significantly (P < 0.05) promoted or had a tendency (0.10 < P < 0.05) to be promoted due to the enrichment of relevant enzymes. Furthermore, evidence at population, molecular, and metabolic levels indicated that polyphenols of raw Pu-erh tea and their metabolites potentially promote Akkermansia muciniphila growth by stimulating a type II and III secretion system protein, the elongation factor Tu, and a glyceraldehyde-3-phosphate dehydrogenase. This study provides new evidence for the prebiotic effects of Pu-erh tea.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Ceco/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Chás Medicinais , Animais , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Ratos , Análise de Sequência de DNA
6.
BMC Microbiol ; 16(1): 259, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27814685

RESUMO

BACKGROUND: The chicken gut microbiota is an important and complicated ecosystem for the host. They play an important role in converting food into nutrient and energy. The coding capacity of microbiome vastly surpasses that of the host's genome, encoding biochemical pathways that the host has not developed. An optimal gut microbiota can increase agricultural productivity. This study aims to explore the composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range (outdoor, OD) and cage (indoor, ID) raising. RESULTS: Cecal samples were collected from 24 chickens across 4 groups (12-w OD, 12-w ID, 18-w OD, and 18-w ID). We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions to characterize the cecal microbiota of Dagu chicken and compare the difference of cecal microbiota between free-range and cage raising chickens. It was found that 34 special operational taxonomic units (OTUs) in OD groups and 4 special OTUs in ID groups. 24 phyla were shared by the 24 samples. Bacteroidetes was the most abundant phylum with the largest proportion, followed by Firmicutes and Proteobacteria. The OD groups showed a higher proportion of Bacteroidetes (>50 %) in cecum, but a lower Firmicutes/Bacteroidetes ratio in both 12-w old (0.42, 0.62) and 18-w old groups (0.37, 0.49) compared with the ID groups. Cecal microbiota in the OD groups have higher abundance of functions involved in amino acids and glycan metabolic pathway. CONCLUSION: The composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range and cage raising are different. The cage raising mode showed a lower proportion of Bacteroidetes in cecum, but a higher Firmicutes/Bacteroidetes ratio compared with free-range mode. Cecal microbiota in free-range mode have higher abundance of functions involved in amino acids and glycan metabolic pathway.


Assuntos
Bactérias/classificação , Bactérias/genética , Ceco/microbiologia , Galinhas/microbiologia , Ensaios de Triagem em Larga Escala , Microbiota , Filogenia , Animais , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sequência de Bases , China , Classificação , Papo das Aves/microbiologia , Fezes , Comportamento Alimentar , Microbioma Gastrointestinal , Ensaios de Triagem em Larga Escala/veterinária , Consórcios Microbianos/genética , Microbiota/genética , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/veterinária
7.
Front Plant Sci ; 15: 1441613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315367

RESUMO

Introduction: Wetlands are ecosystems that have a significant impact on ecological services and are essential for the environment. With the impacts of rapid population growth, wetland reclamation, urbanization, and land use change, wetlands have undergo severe degradation or loss. However, the response of soil fungal communities to wetland degradation remains unknown. It is crucial to comprehend how the diversity and population dynamics of soil fungi respond to varying levels of degradation and ecological progression in the wetlands of the Songnen Plain. Methods: In this study, high- throughput sequencing technology to analyze the variety and abundance of soil fungi in the undegraded (UD), light degraded (LD), moderate degraded (MD), and severe degraded (SD) conditions in the Halahai Nature Reserve of Songnen Plain. This study also explored how these fungi are related to the soil's physicochemical properties in wetlands at various degradation levels. Results: The findings indicated that Basidiomycota and Ascomycota were the primary phyla in the Songnen Plain, with Ascomycota increasing and Basidiomycota decreasing as wetland degradation progressed. Significant differences were observed in soil organic carbon (SOC), total nitrogen (TN),and soil total potassium (TK) among the succession degradation stages. With the deterioration of the wetland, there was a pattern of the Shannon and Chao1 indices increasing and then decreasing. Non-metric Multidimensional Scaling (NMDS) analysis indicated that the fungal community structures of UD and LD were quite similar, whereas MD and SD exhibited more distinct differences in their fungal community compositions. Redundancy analysis (RDA) results indicated that Soil Water content (SWC) and total nitrogen (TN) were the primary environmental factors influencing the dominant fungal phylum. According to the FUNGuild prediction, Ectomycorrhizal and plant pathogens gradually declining with wetland degradation. Discussion: In general, our findings can offer theoretical support develop effective solutions for the preservation and rehabilitation of damaged wetlands.

8.
Front Plant Sci ; 15: 1340336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590742

RESUMO

China consumes 35% of the world's fertilizer every year; however, most of the nitrogen fertilizers, which are essential for rice cultivation, are not used effectively. In this study, factors affecting the nitrogen leaching loss rate were studied in typical soil and rice varieties in South China. The effects of various irrigation measures on rice growth and nitrogen leaching loss were investigated by conducting experiments with eight groups. These groups included traditional irrigation (TI) and shallow wet irrigation (SWI). The TI is a common irrigation method for farmers in South China, maintaining a water layer of 5-8 cm depth. For SWI, after establishing a shallow water layer usually maintaining at 1-2 cm, paddy is irrigated when the field water level falls to a certain depth, then this process is then repeat as necessary. The nitrogen distribution characteristics were determined using 15N isotope tracing. In addition, the effects of nitrification, denitrification, and microbial composition on soil nitrogen transformation at different depths were studied by microbial functional gene quantification and high-throughput sequencing. The results revealed that in the SWI groups, the total nitrogen leaching loss rate reduced by 0.3-0.8% and the nitrogen use efficiency (NUE) increased by 2.18-4.43% compared with those in the TI groups. After the 15N-labeled nitrogen fertilizer was applied, the main pathways of nitrogen were found to be related to plant absorption and nitrogen residues. Furthermore, paddy soil ammonia-oxidizing archaea were more effective than ammonia-oxidizing bacteria for soil ammonia oxidation by SWI groups. The SWI measures increased the relative abundance of Firmicutes in paddy soil, enhancing the ability of rice to fix nitrogen to produce ammonium nitrogen, thus reducing the dependence of rice on chemical fertilizers. Moreover, SWI enhanced the relative abundance of nirS and nosZ genes within surface soil bacteria, thereby promoting denitrification in the surface soil of paddy fields. SWI also promoted ammonia oxidation and denitrification by increasing the abundance and activity of Proteobacteria, Nitrospirae, and Bacteroidetes. Collectively, SWI effectively reduced the nitrogen leaching loss rate and increase NUE.

9.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534956

RESUMO

The objective of this study was to investigate the effects of live yeast (LY, Saccharomyces cerevisiae) on the lactation performance, bacterial community, and functions in the rumen and hindgut of dairy cows under heat stress. Thirty-three multiparous (parity 3.9 ± 0.8) Holstein dairy cows (189.1 ± 6.6 d in milk at the beginning of the experiment) were randomly assigned to three groups (11 cows per treatment). Cows in the three groups were fed a diet without yeast (CON), with 10 g yeast/d/head (LY-10), and with 20 g yeast/d/head (LY-20). The yeast product contained 2.0 × 1010 CFU/g. Supplementing LY decreased the rectal temperature and respiratory rate of cows, and increased dry matter intake, milk yield, milk fat yield, milk protein yield, and milk lactose yield (P < 0.001), yet decreased milk urea nitrogen concentration (P = 0.035). Interaction effects of treatment × week were observed for rectal temperature (P < 0.05), respiratory rate (P < 0.05), milk yield (P = 0.015), milk urea nitrogen (P = 0.001), milk protein yield (P = 0.008), and milk lactose yield (P = 0.030). In rumen, LY increased the concentrations of acetate, isobutyrate, isovaterate, valerate, total volatile fatty acids (VFAs), and NH3-N (P < 0.05). Miseq sequencing of the 16S rRNA genes showed that LY increased the relative abundance of Prevotella and Prevotellaceae UCG-003 at the genus level with a series of enriched pathways in the metabolism of carbohydrates and protein. In fecal samples, LY did not affect the profile of VFAs (P > 0.05). Clostridium sensu stricto 1 (P = 0.013) and Actinobacillus (P = 0.011) increased in the relative abundance by LY, whereas Bacteroides (P = 0.016) and Oscillospirales UCG-010 (P = 0.005) decreased with a series of enriched pathways in carbohydrate metabolism, secondary bile acid biosynthesis. In summary, LY supplementation altered the bacterial community's composition and function in rumen and hindgut, and simultaneously alleviated the detrimental effects of heat stress on dairy cows. These findings provide extended insight into the effects of LY in the rumen and hindgut of dairy cows exposed to heat stress.


Dairy cows are exposed to severe heat stress under hot and humid climates in summer in south China, resulting in a decline in feed intake and milk yield. Therefore, we investigated the effect of live yeast (LY, Saccharomyces cerevisiae) supplementation on the milk performance, bacterial community, and functions in the rumen and hindgut of dairy cows under heat stress. Thirty-three dairy cows were randomly assigned to control (CON, without yeast addition), treatment 1 (LY-10, with 10 g yeast/d/head) and treatment 2 (LY-20, with 20 g yeast/d/head). Supplementing LY decreased the rectal temperature and respiratory rate of the dairy cows and increased feed intake and milk performance. Live yeast enhanced fermentation in the rumen but did not affect it in the hindgut. Live yeast altered the microbiota in the rumen and hindgut, with an enrichment of bacteria in the pathways of the metabolism of carbohydrates, protein, and other substances. In all, LY supplementation had beneficial effects on dairy cows under heat stress by affecting the microbiota and fermentation in the rumen and hindgut.


Assuntos
Saccharomyces cerevisiae , Fermento Seco , Gravidez , Feminino , Bovinos , Animais , Saccharomyces cerevisiae/metabolismo , Lactação , Rúmen/metabolismo , Lactose/metabolismo , RNA Ribossômico 16S/metabolismo , Dieta/veterinária , Proteínas do Leite/metabolismo , Ácidos Graxos Voláteis/metabolismo , Resposta ao Choque Térmico , Ureia/metabolismo , Fermentação , Suplementos Nutricionais
10.
Sci Total Environ ; 858(Pt 2): 159957, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343820

RESUMO

The consumption of similar diets has led to the convergence of gut microbial compositions and functions across phylogenetically distinct animals. However, given the functional redundancy in gut microbiomes, it remains unclear whether synchrony occurs in their functions only and not in their composition, even within phylogenetically close animals consuming a similar diet. In this study, we collected fresh fecal samples from a Rhinopithecus roxellana population in April 2021 (before food provisioning) and June and December 2021 (after food provisioning) and used high-throughput sequencing methods (full-length 16S rRNA gene sequencing and metagenomes) to investigate changes in the gut microbiome due to food provisioning. Combining the results from our previous studies on a wild Rhinopithecus bieti population, we found that the artificial food provisions (e.g., apples, carrots, and peanuts) affected the gut microbiome, and synchrony occurred only in its functions and antibiotic resistance gene community in both Rhinopithecus species, reflecting its ecological functional redundancy. Given the current findings (e.g., depletion in probiotic microbes, dysbiosis in the gut microbial community, and changes in the antibiotic resistance gene profile), anthropogenic disturbances (e.g., food provisioning) would have potential negative effects on host health. Therefore, human activity in animal conservation should be rethought from the standpoint of gut microbial diversity.


Assuntos
Microbioma Gastrointestinal , Presbytini , Humanos , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias , Fezes
11.
PeerJ ; 11: e15583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397028

RESUMO

Although dumping treated wastewater into soil might provide nutrients and organic matter, it can also expose the ecosystem to biological and chemical risks. A vital indication of soil health and quality is the soil microbial community. The current work used next-generation 16S rRNA gene amplicon sequencing to evaluate the effects of the long-term influx of tertiary treated wastewater (TWW) into Wadi Uranah, a dry valley in Makkah city, Saudi Arabia, on native topsoil bacterial community composition and predicted functions. The findings demonstrated that neither the compositions of microbial communities nor their predicted functions using PICRUSt2 differed significantly (p > 0.05) between polluted valley soil (PolVS) and unpolluted valley soil (UPVS). Alpha and beta diversity, however, showed that the PolVS samples had a considerably higher level of diversity and variability. Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were the most prevalent phyla in both groups. Noticeable relative variations existed in some metabolic pathways such as cofactor, prosthetic group, electron carrier degradation, aldehyde degradation, and Entner-Doudoroff (ED) pathways. Overall, our findings suggest that because both groups have very similar core microbiomes and functions, the long-term disposal of tertiary TWW into Wadi Uranah may have little to no influence on the composition and function of soil bacterial communities. In addition, the long-term discharge of tertiary TWW after partially treated wastewater's initial disposal may have helped the native soil microbial community recover.


Assuntos
Ecossistema , Águas Residuárias , RNA Ribossômico 16S/genética , Genes de RNAr , Bactérias/genética , Solo/química
12.
J Hazard Mater ; 423(Pt B): 127094, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34530278

RESUMO

The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.


Assuntos
Poluentes Ambientais , Microbioma Gastrointestinal , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Pathogens ; 11(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456123

RESUMO

Like other kinetoplastid protozoa, the flagellum in Leishmania parasites plays central roles throughout the life cycle. Discoveries over the past decade have begun to elucidate flagellar functions at the molecular level in both the insect vector stage promastigotes and intra-macrophage amastigotes. This focused review will highlight recent advances that contribute to understanding flagellar function in the various biological contexts encountered by Leishmania parasites.

14.
Water Res ; 219: 118565, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35597219

RESUMO

Harmful algal blooms (HABs) may quickly travel and inoculate new water bodies via currents and runoff in estuaries. The role of in-situ prokaryotic communities in the re-establishment and growth of inoculated algal blooms remains unknown. A novel on-board incubation experiment was employed to simulate the sudden surge of algal blooms to new estuarine waters and reveal possible outcomes. A dinoflagellate (Amphidinium carterae) and a diatom species (Thalassiosira weissflogii) which had bloomed in the Pearl River Estuary (PRE) area were cultured to bloom densities and reintroduced back into PRE natural seawaters. The diatom showed better adaptation ability to the new environment and increased significantly after the incubation. Simultaneously, particle-attached (PA) prokaryotic community structure was strongly influenced by adding of the diatom, with some opportunistic prokaryotes significantly enhanced in the diatom treatment. Whereas the dinoflagellate population did not increase following incubation, and their PA prokaryotic community showed no significant differences relative to the control. Metagenomic analyzes revealed that labile carbohydrates and organic nitrogen produced by the diatom contributed to the surge of certain PA prokaryotes. Genomic properties of a bacteria strain, which is affiliated with genus GMD16E07 (Planctomycetaceae) and comprised up to 50% of PA prokaryotes in the diatom treatment, was described here for the first time. Notably, the association of Planctomycetaceae and T. weissflogii likely represents symbiotic mutualism, with the diatom providing organic matter for Planctomycetaceae and the bacteria supplying vitamins and detoxifying nitriles and hydrogen peroxides in exchange. Therefore, the close association between Planctomycetaceae and T. weissflogii promoted the growth of both populations, and eventually facilitated the diatom bloom establishment.


Assuntos
Diatomáceas , Dinoflagellida , Bactérias/genética , Estuários , Proliferação Nociva de Algas , Rios
15.
Ecol Evol ; 11(9): 3737-3745, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976772

RESUMO

Migratory shorebirds have many unique life history characteristics, such as long-distance travel between breeding sites, stopover sites, and wintering sites. The physiological challenges for migrant energy requirement and immunity may affect their gut microbiome community. Here, we reviewed the specific features (e.g., relatively high proportion of Corynebacterium and Fusobacterium) in the gut microbiome of 18 migratory shorebirds, and the factors (e.g., diet, migration, environment, and phylogeny) affecting the gut microbiome. We discussed possible future studies of the gut microbiome in migratory shorebirds, including the composition and function of the spatial-temporal gut microbiome, and the potential contributions made by the gut microbiome to energy requirement during migration.

16.
Sci Total Environ ; 758: 143693, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33280868

RESUMO

Human activities are stimulating the presence of foreign antibiotic-resistance bacteria (ARB) in soils and antibiotic-contaminated soils are increasing continuously in the world. However, little is known about the impacts of foreign ARB on the indigenous bacterial community in antibiotic-contaminated soil. Herein, using a microcosm experiment we studied the soil bacterial community composition and function (presented with niche structure and niche breadth) in the response to a model ARB (multidrug-resistant Escherichia coli) amendment in the absence and presence of tetracycline contamination. Results demonstrated that the ARB amendment increased the diversity and niche breadth and altered the composition and niche structure of the soil bacterial community. Tetracycline contamination further enhanced these impacts probably via increasing the survival of foreign ARB in soil. Interestingly, the ARB-induced changes in the bacterial community composition and function were synchronized, which might be driven by the substantial changes in some core taxa (Proteobacteria, Bacteroidetes, Chloroflexi, and Patescibacteria). Furthermore, the impacts of the foreign ARB on soil bacterial community lasted longer than the survival of ARB in tetracycline-uncontaminated and low contaminated soils, demonstrating that the amendment of foreign ARB into soil likely challenges the stability of the soil bacterial community in a relatively long period. Overall, this study highlighted that antibiotic contamination could aggravate the impacts of the foreign ARB on soil bacterial community composition and function, resulting in the potential risks in reducing soil quality.


Assuntos
Poluentes do Solo , Solo , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/toxicidade , Bactérias , Humanos , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
17.
Front Microbiol ; 11: 1742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793173

RESUMO

The rhizosphere microbiome (rhizobiome) plays a critical role in plant health and development. However, the processes by which the constituent microbes interact to form and maintain a community are not well understood. To investigate these molecular processes, we examined pairwise interactions between 11 different microbial isolates under select nutrient-rich and nutrient-limited conditions. We observed that when grown with media supplemented with 56 mM glucose, two microbial isolates were able to inhibit the growth of six other microbes. The interaction between microbes persisted even after the antagonistic microbe was removed, upon exposure to spent media. To probe the genetic basis for these antagonistic interactions, we used a barcoded transposon library in a proxy bacterium, Pseudomonas putida, to identify genes which showed enhanced sensitivity to the antagonistic factor(s) secreted by Acinetobacter sp. 02. Iron metabolism-related gene clusters in P. putida were implicated by this systems-level analysis. The supplementation of iron prevented the antagonistic interaction in the original microbial pair, supporting the hypothesis that iron limitation drives antagonistic microbial interactions between rhizobionts. We conclude that rhizobiome community composition is influenced by competition for limiting nutrients, with implications for growth and development of the plant.

18.
Sci Total Environ ; 708: 134564, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784169

RESUMO

Anaerobic sludge digesters are biorefineries for energy recovery from waste activated sludge (WAS) via methane production, in which disintegration of floc structure and microbial cells is a major challenge in releasing extracellular polymeric substances (EPS) and cytoplasmic macromolecules for subsequent hydrolysis and fermentation. Here, we developed a new process combining alkaline/acid pre-treatments and anaerobic digestion (APAD) to improve sludge digestion. Both alkaline and acid pre-treatments effectively disintegrated the floc structure and microbial cells to release sludge organic contents. Under the optimized alkaline/acid pre-treatment condition, carbon removal achieved 52.8 ± 1.7% in APAD digesters, in contrast to 30.9 ± 2.2% and 42.4 ± 1.6% in anaerobic digesters fed with fresh WAS (control-AD) and thermal pre-treated sludge (thermal-AD), respectively. Both alkaline/acid and thermal pre-treatments largely shifted sludge community composition and function, but in distinct ways, possibly due to their different sludge constitutes (i.e., dissolved organic matter and NaCl). Correspondingly, microbial network analysis identified three modules with varied keystone taxa and interaction patterns in the three digesters. Life cycle assessment showed the comparable environmental impacts of APAD, thermal-AD and control-AD. In all, this study provided a new solution for WAS treatment and insights into impact of sludge pre-treatments on sludge digestion microbiome.


Assuntos
Esgotos , Anaerobiose , Reatores Biológicos , Hidrólise , Metano , Eliminação de Resíduos Líquidos
19.
Water Res ; 171: 115398, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874391

RESUMO

Elevated atmospheric CO2 concentration (eCO2) may have different effects on the bacterial community with regard to C assimilation and decomposition in eutrophic waters compared to that in fresh waters with intermediate levels of nutrients and oceans. Aquatic plant growth under eCO2 could further modify microbial activities associated with the C cycle in eutrophic waters. Therefore, there is an urgent need to further study how eCO2 and its interactions with the growth of aquatic plants affect the composition and function of the bacterial community involved in mediating the C cycle in eutrophic waters. Accordingly, we designed a microcosm experiment to investigate the effects of ambient and high CO2 concentrations on bacterial community composition and function in eutrophic waters with and without the growth of Eichhornia crassipes (Mart.) Solms. The results from 16S rRNA gene sequencing, function prediction, and q-PCR showed that eCO2 significantly increased the abundance of bacterial and functional genes involved in CO2 assimilation (photosynthetic bacteria; cbbL IA & IC, cbbL ID, cbbM, pufM) and C decomposition (Acidimicrobiia, Thermoleophilia, Gaiellales; ChiA), illustrating the functional enrichment with photoautotrophy, hydrocarbon degradation, cellulolysis, and aromatic hydrocarbon degradation. However, eCO2 decreased the abundance of some chemoautotrophic bacteria, including nitrifying bacteria (Nitrospirae, Nitrosomonadaceae). In contrast, the cultivation of E. crassipes decreased the abundance of photosynthetic bacteria but increased the abundance of bacteria involved in complex C decomposition associated with root exudates and degradation, e.g. Fibrobacteres, Sphingobacteriales, Sphingomonadales, and Rhizobiales. eCO2 and growth of E. crassipes had opposite effects on algal density in eutrophic waters, creating interactive effects that further decreased the diversity of the bacterial community and abundance of some CO2-assimilating bacteria with nitrifying characteristics (Nitrosomonadaceae) and some C-degrading bacteria (Fibrobacteres) with denitrifying properties (Flavobacteriaceae, Sphingomonadaceae, and Gemmobacter). Therefore, the interactions between aquatic plants and the bacterial community in eutrophic waters under eCO2 would be beneficial to the environment and help alleviate the greenhouse effect.


Assuntos
Dióxido de Carbono , Carbono , Bactérias , Fenômenos Fisiológicos Bacterianos , RNA Ribossômico 16S
20.
Artigo em Inglês | MEDLINE | ID: mdl-32922444

RESUMO

BACKGROUND: South American rattlesnakes are represented in Brazil by a single species, Crotalus durissus, which has public health importance due to the severity of its envenomation and to its wide geographical distribution. The species is subdivided into several subspecies, but the current classification is controversial. In Brazil, the venoms of C. d. terrificus and C. d. collilineatus are used for hyperimmunization of horses for antivenom production, even though the distinction of these two subspecies are mostly by their geographical distribution. In this context, we described a comparative compositional and functional characterization of individual C. d. collilineatus and C. d. terrificus venoms from three Brazilian states. METHODS: We compared the compositional patterns of C. d. terrificus and C. d. collilineatus individual venoms by 1-DE and RP-HPLC. For functional analyzes, the enzymatic activities of PLA2, LAAO, and coagulant activity were evaluated. Finally, the immunorecognition of venom toxins by the crotalic antivenom produced at Butantan Institute was evaluated using Western blotting. RESULTS: The protein profile of individual venoms from C. d. collilineatus and C. d. terrificus showed a comparable overall composition, despite some intraspecific variation, especially regarding crotamine and LAAO. Interestingly, HPLC analysis showed a geographic pattern concerning PLA2. In addition, a remarkable intraspecific variation was also observed in PLA2, LAAO and coagulant activities. The immunorecognition pattern of individual venoms from C. d. collilineatus and C. d. terrificus by crotalic antivenom produced at Butantan Institute was similar. CONCLUSIONS: The results highlighted the individual variability among the venoms of C. durissus ssp. specimens. Importantly, our data point to a geographical variation of C. durissus ssp. venom profile, regardless of the subspecies, as evidenced by PLA2 isoforms complexity, which may explain the increase in venom neurotoxicity from Northeastern through Southern Brazil reported for the species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA