Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.239
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 317-342, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126419

RESUMO

Over the last decade, immunometabolism has emerged as a novel interdisciplinary field of research and yielded significant fundamental insights into the regulation of immune responses. Multiple classical approaches to interrogate immunometabolism, including bulk metabolic profiling and analysis of metabolic regulator expression, paved the way to appreciating the physiological complexity of immunometabolic regulation in vivo. Studying immunometabolism at the systems level raised the need to transition towards the next-generation technology for metabolic profiling and analysis. Spatially resolved metabolic imaging and computational algorithms for multi-modal data integration are new approaches to connecting metabolism and immunity. In this review, we discuss recent studies that highlight the complex physiological interplay between immune responses and metabolism and give an overview of technological developments that bear the promise of capturing this complexity most directly and comprehensively.


Assuntos
Alergia e Imunologia , Imunidade , Metabolismo , Animais , Humanos , Biologia de Sistemas
2.
Annu Rev Immunol ; 37: 547-570, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30699000

RESUMO

Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.


Assuntos
Biologia Computacional/métodos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Antígenos/imunologia , Antígenos/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Epitopos de Linfócito T/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Annu Rev Biochem ; 93(1): 389-410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594926

RESUMO

Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.


Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Ligantes , Descoberta de Drogas/métodos , Humanos , Proteínas/química , Proteínas/metabolismo , Aprendizado de Máquina , Sítios de Ligação , Desenho de Fármacos
4.
Annu Rev Immunol ; 35: 403-439, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226229

RESUMO

This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.


Assuntos
Biologia Computacional , Simulação por Computador , Modelos Imunológicos , Linfócitos T/imunologia , Vacinas/imunologia , Animais , Pesquisa Biomédica , Ensaios de Triagem em Larga Escala , Humanos , Monitorização Imunológica/métodos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
5.
Cell ; 187(3): 545-562, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306981

RESUMO

Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.


Assuntos
Biologia , Biologia Computacional , Substâncias Macromoleculares/química
6.
Cell ; 187(19): 5453-5467.e15, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163860

RESUMO

Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Microbiota , Humanos , Animais , Camundongos , Antibacterianos/farmacologia , Microbiota/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Metagenoma , Feminino , Fases de Leitura Aberta , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Prevotella/efeitos dos fármacos
7.
Cell ; 187(15): 3919-3935.e19, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38908368

RESUMO

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.


Assuntos
Envelhecimento , Caenorhabditis elegans , Redes Reguladoras de Genes , Longevidade , Transcriptoma , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Animais , Envelhecimento/genética , Transcriptoma/genética , Longevidade/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
8.
Cell ; 187(18): 5064-5080.e14, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39089254

RESUMO

So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.


Assuntos
Redes Reguladoras de Genes , Humanos , Lógica , Biologia Sintética/métodos , Engenharia Genética/métodos , Biologia Computacional/métodos , Animais
9.
Cell ; 187(16): 4305-4317.e18, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38936360

RESUMO

Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.


Assuntos
Colite , Interleucina-17 , Células Th17 , Animais , Administração Oral , Camundongos , Humanos , Ratos , Colite/tratamento farmacológico , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Células Th17/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Masculino , Interleucina-23/metabolismo , Interleucina-23/antagonistas & inibidores , Distribuição Tecidual , Feminino , Ratos Sprague-Dawley
10.
Cell ; 187(19): 5431-5452.e20, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303691

RESUMO

Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.


Assuntos
Aleitamento Materno , Leite Humano , Humanos , Feminino , Leite Humano/microbiologia , Lactente , Pré-Escolar , Asma/microbiologia , Asma/prevenção & controle , Asma/imunologia , Microbiota , Microbioma Gastrointestinal , Masculino , Estudos de Coortes , Recém-Nascido
11.
Cell ; 187(10): 2502-2520.e17, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729110

RESUMO

Human tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features. Recurrence risk-stratification models were trained on prostate cancer specimens imaged with open-top light-sheet microscopy or microcomputed tomography. By comprehensively capturing 3D morphologies, 3D volume-based prognostication achieves superior performance to traditional 2D slice-based approaches, including clinical/histopathological baselines from six certified genitourinary pathologists. Incorporating greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, further emphasizing the value of capturing larger extents of heterogeneous morphology.


Assuntos
Imageamento Tridimensional , Neoplasias da Próstata , Aprendizado de Máquina Supervisionado , Humanos , Masculino , Aprendizado Profundo , Imageamento Tridimensional/métodos , Prognóstico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Microtomografia por Raio-X/métodos
12.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134933

RESUMO

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Assuntos
Glioblastoma , Humanos , Perfilação da Expressão Gênica , Glioblastoma/patologia , Imunoterapia , Células Matadoras Naturais , Macrófagos , Microambiente Tumoral , Análise de Célula Única
13.
Cell ; 186(12): 2705-2718.e17, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295406

RESUMO

Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Metagenoma , Antibacterianos , Neoplasias/tratamento farmacológico
14.
Cell ; 186(25): 5440-5456.e26, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065078

RESUMO

Today's genomics workflows typically require alignment to a reference sequence, which limits discovery. We introduce a unifying paradigm, SPLASH (Statistically Primary aLignment Agnostic Sequence Homing), which directly analyzes raw sequencing data, using a statistical test to detect a signature of regulation: sample-specific sequence variation. SPLASH detects many types of variation and can be efficiently run at scale. We show that SPLASH identifies complex mutation patterns in SARS-CoV-2, discovers regulated RNA isoforms at the single-cell level, detects the vast sequence diversity of adaptive immune receptors, and uncovers biology in non-model organisms undocumented in their reference genomes: geographic and seasonal variation and diatom association in eelgrass, an oceanic plant impacted by climate change, and tissue-specific transcripts in octopus. SPLASH is a unifying approach to genomic analysis that enables expansive discovery without metadata or references.


Assuntos
Algoritmos , Genômica , Genoma , Análise de Sequência de RNA , Humanos , Antígenos HLA/genética , Análise de Célula Única
15.
Cell ; 185(19): 3520-3532.e26, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041435

RESUMO

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.


Assuntos
Amidas , Peptídeos , Amidas/química , Hidrogênio , Ligação de Hidrogênio , Lipídeos , Peptídeos/química
16.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35216672

RESUMO

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Convalescença , Imunidade Adaptativa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Progressão da Doença , Feminino , Humanos , Imunidade Inata/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Transcriptoma , Adulto Jovem , Síndrome de COVID-19 Pós-Aguda
17.
Cell ; 184(8): 2068-2083.e11, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33861964

RESUMO

Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.


Assuntos
Etnicidade/genética , Saúde da População , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Genômica , Humanos , Autorrelato
18.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33961781

RESUMO

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Proteoma/genética , Biologia Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo , Proteômica/métodos
19.
Cell ; 184(15): 3981-3997.e22, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157301

RESUMO

A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.


Assuntos
Retroalimentação Fisiológica , Homeostase/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Interleucina-2/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Comunicação Parácrina , Transdução de Sinais
20.
Cell ; 183(5): 1367-1382.e17, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33160446

RESUMO

A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Nanopartículas/química , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinação , Adolescente , Adulto , Idoso , Animais , COVID-19/virologia , Chlorocebus aethiops , Estudos de Coortes , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Macaca nemestrina , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA