RESUMO
Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei.
Assuntos
Mapeamento Encefálico , Ponte , Animais , Axônios , Córtex Cerebral , Camundongos , Vias Neurais/fisiologia , Neurônios , Ponte/fisiologiaRESUMO
C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.
Assuntos
Astrócitos , Cílios , Camundongos Knockout , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Cílios/metabolismo , Cílios/efeitos dos fármacos , Camundongos , Complemento C3/metabolismo , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/farmacologia , Apoptose/efeitos dos fármacosRESUMO
Renal ischemia-reperfusion injury (IRI) is a common reason of acute kidney injury (AKI). AKI can progress to chronic kidney disease (CKD) in some survivors. Inflammation is considered the first-line response to early-stage IRI. We previously reported that core fucosylation (CF), specifically catalyzed by α-1,6 fucosyltransferase (FUT8), exacerbates renal fibrosis. However, the FUT8 characteristics, role, and mechanism in inflammation and fibrosis transition remain unclear. Considering renal tubular cells are the trigger cells that initiate the fibrosis in the AKI-to-CKD transition in IRI, we targeted CF by generating a renal tubular epithelial cell (TEC)-specific FUT8 knockout mouse and measured FUT8-driven and downstream signaling pathway expression and AKI-to-CKD transition. During the IRI extension phase, specific FUT8 deletion in the TECs ameliorated the IRI-induced renal interstitial inflammation and fibrosis mainly via the TLR3 CF-NF-κB signaling pathway. The results firstly indicated the role of FUT8 in the transition of inflammation and fibrosis. Therefore, the loss of FUT8 in TECs may be a novel potential strategy for treating AKI-CKD transition.
Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/etiologia , Fucosiltransferases/genética , Inflamação , Camundongos Knockout , NF-kappa B , Traumatismo por Reperfusão/genética , Receptor 3 Toll-LikeRESUMO
Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.
Assuntos
Relógios Circadianos , Neocórtex , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Astrócitos/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Hipocampo/metabolismo , Neocórtex/metabolismo , Proteoma/metabolismo , ProteômicaRESUMO
Ebfs are a family of transcription factors regulating the differentiation of multiple cell types of mesenchymal origin, including osteoblasts. Global deletion of Ebf1 results in increased bone formation and bone mass, while global loss of Ebf2 leads to enhanced bone resorption and decreased bone mass. Targeted deletion of Ebf1 in early committed osteoblasts leads to increased bone formation, whereas deletion in mature osteoblasts has no effect. To study the effects of Ebf2 specifically on long bone development, we created a limb bud mesenchyme targeted Ebf2 knockout mouse model by using paired related homeobox gene 1 (Prrx1) Cre. To investigate the possible interplay between Ebf1 and Ebf2, we deleted both Ebf1 and Ebf2 in the cells expressing Prrx1. Mice with Prrx1-targeted deletion of Ebf2 had a very mild bone phenotype. However, deletion of both Ebf1 and Ebf2 in mesenchymal lineage cells lead to significant, age progressive increase in bone volume. The phenotype was to some extent gender dependent, leading to an increase in both trabecular and cortical bone in females, while in males a mild cortical bone phenotype and a growth plate defect was observed. The phenotype was observed at both 6 and 12 weeks of age, but it was more pronounced in older female mice. Our data suggest that Ebfs modulate bone homeostasis and they are likely able to compensate for the lack of each other. The roles of Ebfs in bone formation appear to be complex and affected by multiple factors, such as age and gender.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Osso e Ossos , Proteínas de Homeodomínio , Células-Tronco Mesenquimais , Transativadores , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Fenótipo , Fatores Sexuais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The target of rapamycin (TOR) kinase functions in two multiprotein complexes, TORC1 and TORC2. Although both complexes are evolutionarily conserved, only TORC1 is acutely inhibited by rapamycin. Consequently, only TORC1 signaling is relatively well understood; and, at present, only mammalian TORC1 is a validated drug target, pursued in immunosuppression and oncology. However, the knowledge void surrounding TORC2 is dissipating. Acute inhibition of TORC2 with small molecules is now possible and structural studies of both TORC1 and TORC2 have recently been reported. Here we review these recent advances as well as observations made from tissue-specific mTORC2 knockout mice. Together these studies help define TORC2 structure-function relationships and suggest that mammalian TORC2 may one day also become a bona fide clinical target.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Complexos Multiproteicos/química , Subunidades Proteicas/química , Serina-Treonina Quinases TOR/química , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Knockout , Modelos Moleculares , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the role of Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre, Osx1-Cre, and Col2a1-Cre drivers, respectively. WT and conditional knockout mice were phenotypically assessed by gross morphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated using RNA-Seq, histologic evaluation, and Western blotting. Aged mice with Ezh2 deficiency were also evaluated for premature development of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age but caused no other gross developmental effects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3 lysine 27 (H3K27me3) and altered differentiation in vitro RNA-Seq analysis revealed enrichment of an osteogenic gene expression profile in Ezh2-deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes without inducing excessive hypertrophy or premature osteoarthritis in vivo In summary, loss of Ezh2 reduced H3K27me3 levels, increased the expression of osteogenic genes in chondrocytes, and resulted in a transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondral ossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage commitment.
Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Osteogênese/fisiologia , Animais , Diferenciação Celular/fisiologia , Condrogênese , Técnicas de Silenciamento de Genes , Histonas/química , Histonas/metabolismo , Lisina/química , Metilação , Camundongos , TranscriptomaRESUMO
Loss of function mutations in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1, have been described in the majority of Dravet syndrome patients presenting with epileptic seizures, hyperactivity, autistic traits, and cognitive decline. We previously reported predominant Nav1.1 expression in parvalbumin-expressing (PV+) inhibitory neurons in juvenile mouse brain and observed epileptic seizures in mice with selective deletion of Scn1a in PV+ cells mediated by PV-Cre transgene expression (Scn1afl/+/PV-Cre-TG). Here we investigate the behavior of Scn1afl/+/PV-Cre-TG mice using a comprehensive battery of behavioral tests. We observed that Scn1afl/+/PV-Cre-TG mice display hyperactive behavior, impaired social novelty recognition, and altered spatial memory. We also generated Scn1afl/+/SST-Cre-KI mice with a selective Scn1a deletion in somatostatin-expressing (SST+) inhibitory neurons using an SST-IRES-Cre knock-in driver line. We observed that Scn1afl/+/SST-Cre-KI mice display no spontaneous convulsive seizures and that Scn1afl/+/SST-Cre-KI mice have a lowered threshold temperature for hyperthermia-induced seizures, although their threshold values are much higher than those of Scn1afl/+/PV-Cre-TG mice. We finally show that Scn1afl/+/SST-Cre-KI mice exhibited no noticeable behavioral abnormalities. These observations suggest that impaired Nav1.1 function in PV+ interneurons is critically involved in the pathogenesis of hyperactivity, autistic traits, and cognitive decline, as well as epileptic seizures, in Dravet syndrome.
Assuntos
Comportamento Exploratório/fisiologia , Relações Interpessoais , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Parvalbuminas/biossíntese , Parvalbuminas/genética , Memória Espacial/fisiologia , Animais , Deleção de Genes , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/deficiênciaAssuntos
Citocinas , Linfopoietina do Estroma do Timo , Humanos , Sistema Imunitário , Imunidade Inata , LinfócitosRESUMO
Fibrosis is characterized by extracellular matrix (ECM) remodeling and stiffening. However, the functional contribution of tissue stiffening to noncancer pathogenesis remains largely unknown. Fibronectin (Fn) is an ECM glycoprotein substantially expressed during tissue repair. Here we show in advanced chronic liver fibrogenesis using a mouse model lacking Fn that, unexpectedly, Fn-null livers lead to more extensive liver cirrhosis, which is accompanied by increased liver matrix stiffness and deteriorated hepatic functions. Furthermore, Fn-null livers exhibit more myofibroblast phenotypes and accumulate highly disorganized/diffuse collagenous ECM networks composed of thinner and significantly increased number of collagen fibrils during advanced chronic liver damage. Mechanistically, mutant livers show elevated local TGF-ß activity and lysyl oxidase expressions. A significant amount of active lysyl oxidase is released in Fn-null hepatic stellate cells in response to TGF-ß1 through canonical and noncanonical Smad such as PI3 kinase-mediated pathways. TGF-ß1-induced collagen fibril stiffness in Fn-null hepatic stellate cells is significantly higher compared with wild-type cells. Inhibition of lysyl oxidase significantly reduces collagen fibril stiffness, and treatment of Fn recovers collagen fibril stiffness to wild-type levels. Thus, our findings indicate an indispensable role for Fn in chronic liver fibrosis/cirrhosis in negatively regulating TGF-ß bioavailability, which in turn modulates ECM remodeling and stiffening and consequently preserves adult organ functions. Furthermore, this regulatory mechanism by Fn could be translated for a potential therapeutic target in a broader variety of chronic fibrotic diseases.
Assuntos
Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Animais , Disponibilidade Biológica , Tetracloreto de Carbono , Doença Crônica , Colágeno/metabolismo , Fibronectinas/deficiência , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/enzimologia , Fígado/patologia , Fígado/fisiopatologia , Fígado/ultraestrutura , Cirrose Hepática/fisiopatologia , Camundongos , Mutação/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
The suprachiasmatic nucleus houses the central circadian clock and is characterized by the timely regulated expression of clock genes. However, neurons of the cerebellar cortex also contain a circadian oscillator with circadian expression of clock genes being controlled by the suprachiasmatic nucleus. It has been suggested that the cerebellar circadian oscillator is involved in food anticipation, but direct molecular evidence of the role of the circadian oscillator of the cerebellar cortex is currently unavailable. To investigate the hypothesis that the circadian oscillator of the cerebellum is involved in circadian physiology and food anticipation, we therefore by use of Cre-LoxP technology generated a conditional knockout mouse with the core clock gene Arntl deleted specifically in granule cells of the cerebellum, since expression of clock genes in the cerebellar cortex is mainly located in this cell type. We here report that deletion of Arntl heavily influences the molecular clock of the cerebellar cortex with significantly altered and arrhythmic expression of other central clock and clock-controlled genes. On the other hand, daily expression of clock genes in the suprachiasmatic nucleus was unaffected. Telemetric registrations in different light regimes did not detect significant differences in circadian rhythms of running activity and body temperature between Arntl conditional knockout mice and controls. Furthermore, food anticipatory behavior did not differ between genotypes. These data suggest that Arntl is an essential part of the cerebellar oscillator; however, the oscillator of the granular layer of the cerebellar cortex does not control traditional circadian parameters or food anticipation.
RESUMO
The orphan nuclear receptor, liver receptor homolog-1 (aka Nuclear receptor subfamily 5, Group A, Member 2 (Nr5a2)), is widely expressed in mammalian tissues, and its ovarian expression is restricted to granulosa cells of activated follicles. We employed the floxed Nr5a2 (Nr5a2f/f) mutant mouse line and two granulosa-specific Cre lines, Anti-Müllerian hormone receptor- 2 (Amhr2Cre) and transgenic cytochrome P450 family 19 subfamily A polypeptide 1 (tgCyp19Cre), to develop two tissue- and time-specific Nr5a2 depletion models: Nr5a2Amhr2-/- and Nr5a2Cyp19-/-. In the Nr5a2Cyp19-/- ovaries, Nr5a2 was depleted in mural granulosa, but not cumulus cells. We induced follicular development in mutant and wild-type (control, CON) mice with equine chorionic gonadotropin followed 44 h later treatment with human chorionic gonadotropin (hCG) to induce ovulation. Both Nr5a2Amhr2-/- and Nr5a2Cyp19-/- cumulus-oocyte complexes underwent a reduced degree of expansion in vitro relative to wild-type mice. We found downregulation of epiregulin (Ereg), amphiregulin (Areg), betacellulin (Btc) and tumor necrosis factor stimulated gene-6 (Tnfaip6) transcripts in Nr5a2Amhr2-/- and Nr5a2Cyp19-/- ovaries. Tnfaip6 protein abundance, by quantitative immunofluorescence, was likewise substantially reduced in the Nr5a2-depleted model. Transcript abundance for connexin 43 (Gja1) in granulosa cells was lower at 0 h and maximum at 8 h post-hCG in both Nr5a2Amhr2-/- and Nr5a2Cyp19-/- follicles, while Gja1 protein was not different prior to the ovulatory signal, but elevated at 8 h in Nr5a2Amhr2-/- and Nr5a2Cyp19-/- follicles. In both mutant genotypes, oocytes can mature in vivo and resulting embryos were capable of proceeding to blastocyst stagein vitro. We conclude that Nr5a2 is essential for cumulus expansion in granulosa cells throughout follicular development. The disruption of Nr5a2 in follicular somatic cells does not affect the capacity of the oocyte to be fertilized by intracytoplasmic sperm injection.
Assuntos
Células do Cúmulo/fisiologia , Ovário/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Injeções de Esperma Intracitoplásmicas/métodos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Ciclo Estral , Feminino , Fertilização/fisiologia , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Oócitos/fisiologia , Ovário/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genéticaRESUMO
NOTCH1 plays an important role in epithelial differentiation and carcinogenesis. To investigate the impact of Notch1 inactivation in oroesophageal epithelium, we generated conditional knockout (cKO) mice, using a combined construct which induces the expression of single guide RNA targeting Notch1 and Cas9 by the KRT14 promoter. The cKO mice exhibited patchy hair loss and multiple NOTCH1-negative areas in the tongue epithelium, indicative of heterogeneous knockout. The cKO mice showed susceptibility to esophageal tumorigenesis, underscoring Notch1 as a tumor suppressor. Our one-step strategy for generation of cKO mice provides a versatile method to examine a gene function in vivo.
Assuntos
Carcinogênese/metabolismo , Modelos Animais de Doenças , Neoplasias Esofágicas/metabolismo , Camundongos Knockout/metabolismo , Receptor Notch1/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Camundongos , Camundongos Knockout/genética , Camundongos Knockout/imunologia , Receptor Notch1/genéticaRESUMO
In vertebrates, BMP signaling has been demonstrated to be sufficient for bone formation in several tissue contexts. This suggests that genes necessary for bone formation are expressed in a BMP signaling dependent manner. However, till date no gene has been reported to be expressed in a BMP signaling dependent manner in bone. Our aim was to identify such genes. On searching the literature we found that several microarray experiments have been conducted where the transcriptome of osteogenic cells in absence and presence of BMP signaling activation have been compared. However, till date, there is no evidence to suggest that any of the genes found to be upregulated in presence of BMP signaling in these microarray analyses is indeed a target of BMP signaling in bone. We wanted to utilize this publicly available information to identify candidate BMP signaling target genes in vivo. We performed a meta-analysis of six such comparable microarray datasets. This analysis and subsequent experiments led to the identification of five targets of BMP signaling in bone that are conserved both in mouse and chick. Of these Lox, Klf10 and Gpr97 are likely to be direct transcriptional targets of BMP signaling pathway. Dpysl3, is a novel BMP signaling target identified in our study. Our data demonstrate that Dpysl3 is important for osteogenic differentiation of mesenchymal cells and is involved in cell secretion. We have demonstrated that the expression of Dpysl3 is co-operatively regulated by BMP signaling and Runx2. Based on our experimental data, in silico analysis of the putative promoter-enhancer regions of Bmp target genes and existing literature, we hypothesize that BMP signaling collaborates with multiple signaling pathways to regulate the expression of a unique set of genes involved in endochondral ossification.
Assuntos
Desenvolvimento Ósseo/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Sequência Conservada , Evolução Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Animais , Sequência de Bases , Osso e Ossos/citologia , Diferenciação Celular/genética , Embrião de Galinha , Simulação por Computador , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Osteogênese/genética , Transdução de Sinais/genética , Transcrição GênicaRESUMO
In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination.
Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Bainha de Mielina/fisiologia , Animais , Sequência de Bases , Primers do DNA , Feminino , Proteínas Ativadoras de GTPase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da PolimeraseRESUMO
CDH2 (cadherin 2, Neural-cadherin, or N-cadherin) is the predominant protein of testicular basal ectoplasmic specializations (basal ES; a testis-specific type of adhesion junction), one of the major cell junctions composing the blood-testis barrier (BTB). The BTB is found between adjacent Sertoli cells in seminiferous tubules, which divides the tubules into basal and adluminal compartments and prevents the deleterious exchange of macromolecules between blood and seminiferous tubules. However, the exact roles of basal ES protein CDH2 in BTB function and spermatogenesis is still unknown. We thus generated mice with Cdh2 specifically knocked out in Sertoli cells by crossing Cdh2 loxP mice with Amh-Cre mice. Cdh2 deletion in Sertoli cells did not affect Sertoli cell counts, but led to compromised BTB function, delayed meiotic progression from prophase to metaphase I in testes, increased germ cell apoptosis, sloughing of meiotic cells, and, subsequently, reduced sperm counts in epididymides and subfertility of mice. However, the testes with Cdh2-specific deletion in germ cells did not show any difference from the normal control testes, and phenotypes observed in Sertoli cell and germ cell Cdh2 double-knockout mice were indistinguishable from those in mice with Cdh2 specifically knocked out only in Sertoli cells. Taken together, our data demonstrate that the adhesion junction component, Cdh2, functions just in Sertoli cells, but not in germ cells during spermatogenesis, and is essential for the integrity of BTB function, its deletion in Sertoli cells would lead to the BTB damage and subsequently meiosis and spermatogenesis failure.
Assuntos
Caderinas/genética , Deleção de Genes , Infertilidade Masculina/genética , Meiose/fisiologia , Mutação/genética , Células de Sertoli/citologia , Animais , Apoptose/genética , Apoptose/fisiologia , Barreira Hematotesticular/fisiopatologia , Caderinas/deficiência , Caderinas/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Infertilidade Masculina/fisiopatologia , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Células de Sertoli/fisiologia , Espermatogênese/genética , Espermatogênese/fisiologiaRESUMO
PURPOSE: MR spectroscopy (MRS) can improve diagnosis and follow treatment in cancer. However, no study has yet reported application of in vivo (1)H-MRS in malignant pancreatic lesions. This study quantitatively determined whether in vivo (1)H-MRS on multiple endocrine neoplasia type 1 (Men1) conditional knockout (KO) mice and their wild type (WT) littermates could detect differences in total choline (tCho) levels between tumor and control pancreas. METHODS: Relative tCho levels in pancreatic tumors or pancreata from KO and WT mice were determined using in vivo (1)H-MRS at 9.4 T. The levels of Cho-containing compounds were also quantified using in vitro (1)H-NMR on extracts of pancreatic tissues from KO and WT mice, respectively, and on extracts of pancreatic tissues from patients with pancreatic neuroendocrine tumors (PNETs). RESULTS: tCho levels measured by in vivo (1)H-MRS were significantly higher in PNETs from KO mice compared to the normal pancreas from WT mice. The elevated choline-containing compounds were also identified in pancreatic tumors from KO mice and tissues from patients with PNETs via in vitro (1)H-NMR. CONCLUSION: These results indicate the potential use of tCho levels estimated via in vivo (1)H-MRS in differentiating malignant pancreatic tumors from benign tumors.
Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasia Endócrina Múltipla Tipo 1/química , Neoplasia Endócrina Múltipla Tipo 1/diagnóstico , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/diagnóstico , Animais , Colina/análise , Colina/química , Colina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Neoplasia Endócrina Múltipla Tipo 1/patologia , Neoplasias Pancreáticas/patologia , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Schizophrenia, a debilitating psychiatric disorder, displays considerable interindividual variation in clinical presentations. The ongoing debate revolves around whether this heterogeneity signifies a continuum of severity linked to a singular causative factor or a collection of distinct subtypes with unique origins. Within the realm of schizophrenia, the functional impairment of GluN2A, a subtype of the NMDA receptor, has been associated with an elevated risk. Despite GluN2A's expression across various neuronal types throughout the brain, its specific contributions to schizophrenia and its involvement in particular cell types or brain regions remain unexplored. METHODS: We generated age-specific, cell type-specific or brain region-specific conditional knockout mice targeting GluN2A and conducted a comprehensive analysis using tests measuring phenotypes relevant to schizophrenia. FINDINGS: Through the induction of germline ablation of GluN2A, we observed the emergence of numerous schizophrenia-associated abnormalities in adult mice. Intriguingly, GluN2A knockout performed at different ages, in specific cell types and within distinct brain regions, we observed overlapping yet distinct schizophrenia-related phenotypes in mice. INTERPRETATION: Our interpretation suggests that the dysfunction of GluN2A is sufficient to evoke heterogeneous manifestations associated with schizophrenia, indicating that GluN2A stands as a prominent risk factor and a potential therapeutic target for schizophrenia. FUNDING: This project received support from the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02) awarded to Y.C. and the Natural Science Foundation of Shanghai (Grant No. 19ZR1468600 and 201409003800) awarded to G.Y.
Assuntos
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Camundongos , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismoRESUMO
The insights into interactions between host genetics and gut microbiome (GM) in colorectal tumor susceptibility (CTS) remains lacking. We used Collaborative Cross mouse population model to identify genetic and microbial determinants of Azoxymethane-induced CTS. We identified 4417 CTS-associated single nucleotide polymorphisms (SNPs) containing 334 genes that were transcriptionally altered in human colorectal cancers (CRCs) and consistently clustered independent human CRC cohorts into two subgroups with different prognosis. We discovered a set of genera in early-life associated with CTS and defined a 16-genus signature that accurately predicted CTS, the majority of which were correlated with human CRCs. We identified 547 SNPs associated with abundances of these genera. Mediation analysis revealed GM as mediators partially exerting the effect of SNP UNC3869242 within Duox2 on CTS. Intestine cell-specific depletion of Duox2 altered GM composition and contribution of Duox2 depletion to CTS was significantly influenced by GM. Our findings provide potential novel targets for personalized CRC prevention and treatment.
Assuntos
Azoximetano , Camundongos de Cruzamento Colaborativo , Neoplasias Colorretais , Microbioma Gastrointestinal , Polimorfismo de Nucleotídeo Único , Animais , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/induzido quimicamente , Humanos , Camundongos , Camundongos de Cruzamento Colaborativo/genética , Oxidases Duais/genética , Oxidases Duais/metabolismo , Predisposição Genética para Doença , Masculino , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Modelos Animais de Doenças , FemininoRESUMO
Short root defects are prone to cause various periodontal diseases and lead to tooth loss in some serious cases. Studies about the mechanisms governing the development of the root are needed for a better understanding of the pathogenesis of short root defects. The protein family with sequence similarity 20 group C (FAM20C) is a Golgi casein kinase that has been well studied in the development of tooth crown formation. However, whether FAM20C plays a role in the development of tooth root is still unknown. Thus, we generated Sox2-Cre;Fam20cfl/fl (cKO) mice, in which Fam20c was ablated in both the dental epithelium and dental mesenchyme, and found that the cKO mice showed severe short root defects mainly by inhibiting the development of dental mesenchyme in the root region. In this investigation, we found morphological changes and differentiation defects, with reduced expression of dentin sialophosphoprotein (DSPP) in odontoblasts of the root region in cKO mice. Furthermore, the proliferation rate of apical papillary cells was reduced in the root of cKO mice. In addition, the levels of bone morphogenetic protein 4 (BMP4) and phospho-Smad1/5/8, and that of Osterix and Krüppel-like factor 4 (KLF4), two downstream target molecules of the BMP signaling pathway, were significantly reduced in the root of cKO mice. These results indicate that FAM20C plays an essential role in the development of the root by regulating the BMP signaling pathway.