Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(14): e2110787119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344442

RESUMO

SignificanceMetabolism relies on a small class of molecules (coenzymes) that serve as universal donors and acceptors of key chemical groups and electrons. Although metabolic networks crucially depend on structurally redundant coenzymes [e.g., NAD(H) and NADP(H)] associated with different enzymes, the criteria that led to the emergence of this redundancy remain poorly understood. Our combination of modeling and structural and sequence analysis indicates that coenzyme redundancy may not be essential for metabolism but could rather constitute an evolved strategy promoting efficient usage of enzymes when biochemical reactions are near equilibrium. Our work suggests that early metabolism may have operated with fewer coenzymes and that adaptation for metabolic efficiency may have driven the rise of coenzyme diversity in living systems.


Assuntos
Coenzimas , NAD , Coenzimas/metabolismo , NAD/metabolismo , NADP/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042799

RESUMO

Proteins, as essential biomolecules, account for a large fraction of cell mass, and thus the synthesis of the complete set of proteins (i.e., the proteome) represents a substantial part of the cellular resource budget. Therefore, cells might be under selective pressures to optimize the resource costs for protein synthesis, particularly the biosynthesis of the 20 proteinogenic amino acids. Previous studies showed that less energetically costly amino acids are more abundant in the proteomes of bacteria that survive under energy-limited conditions, but the energy cost of synthesizing amino acids was reported to be weakly associated with the amino acid usage in Saccharomyces cerevisiae Here we present a modeling framework to estimate the protein cost of synthesizing each amino acid (i.e., the protein mass required for supporting one unit of amino acid biosynthetic flux) and the glucose cost (i.e., the glucose consumed per amino acid synthesized). We show that the logarithms of the relative abundances of amino acids in S. cerevisiae's proteome correlate well with the protein costs of synthesizing amino acids (Pearson's r = -0.89), which is better than that with the glucose costs (Pearson's r = -0.5). Therefore, we demonstrate that S. cerevisiae tends to minimize protein resource, rather than glucose or energy, for synthesizing amino acids.


Assuntos
Aminoácidos/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Evolução Biológica , Metabolismo Energético/fisiologia , Evolução Molecular , Engenharia Metabólica/métodos , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Metab Eng ; 82: 216-224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367764

RESUMO

Metabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the in silico analysis of metabolic and physiological phenotypes, like cell growth. Here, we provide a classification of all existing constraint-based approaches that predict and integrate MPIs using genome-scale metabolic networks as input. In addition, we benchmark the performance of the approaches to predict MPIs in a comparative study using different features extracted from the model structure and predicted metabolic phenotypes with the state-of-the-art metabolic networks of Escherichia coli and Saccharomyces cerevisiae. Lastly, we provide an outlook for future, feasible directions to expand the consideration of MPIs in constraint-based modeling approaches with wide biotechnological applications.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Redes e Vias Metabólicas/genética , Fenótipo
4.
Metab Eng ; 83: 86-101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561149

RESUMO

Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.


Assuntos
Arabidopsis , Modelos Biológicos , Arabidopsis/genética , Arabidopsis/metabolismo , Fotossíntese , Fenótipo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Células Vegetais/metabolismo , Dióxido de Carbono/metabolismo
5.
Biotechnol Bioeng ; 121(1): 366-379, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942516

RESUMO

Biotechnology offers many opportunities for the sustainable manufacturing of valuable products. The toolbox to optimize bioprocesses includes extracellular process elements such as the bioreactor design and mode of operation, medium formulation, culture conditions, feeding rates, and so on. However, these elements are frequently insufficient for achieving optimal process performance or precise product composition. One can use metabolic and genetic engineering methods for optimization at the intracellular level. Nevertheless, those are often of static nature, failing when applied to dynamic processes or if disturbances occur. Furthermore, many bioprocesses are optimized empirically and implemented with little-to-no feedback control to counteract disturbances. The concept of cybergenetics has opened new possibilities to optimize bioprocesses by enabling online modulation of the gene expression of metabolism-relevant proteins via external inputs (e.g., light intensity in optogenetics). Here, we fuse cybergenetics with model-based optimization and predictive control for optimizing dynamic bioprocesses. To do so, we propose to use dynamic constraint-based models that integrate the dynamics of metabolic reactions, resource allocation, and inducible gene expression. We formulate a model-based optimal control problem to find the optimal process inputs. Furthermore, we propose using model predictive control to address uncertainties via online feedback. We focus on fed-batch processes, where the substrate feeding rate is an additional optimization variable. As a simulation example, we show the optogenetic control of the ATPase enzyme complex for dynamic modulation of enforced ATP wasting to adjust product yield and productivity.


Assuntos
Reatores Biológicos , Modelos Biológicos , Biotecnologia , Simulação por Computador , Engenharia Genética
6.
J Biomed Inform ; 150: 104597, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38272432

RESUMO

One of the critical steps to characterize metabolic alterations in multifactorial diseases, as well as their heterogeneity across different patients, is the identification of reactions that exhibit significantly different usage (or flux) between cohorts. However, since metabolic fluxes cannot be determined directly, researchers typically use constraint-based metabolic network models, customized on post-genomics datasets. The use of random sampling within the feasible region of metabolic networks is becoming more prevalent for comparing these networks. While many algorithms have been proposed and compared for efficiently and uniformly sampling the feasible region of metabolic networks, their impact on the risk of making false discoveries when comparing different samples has not been investigated yet, and no sampling strategy has been so far specifically designed to mitigate the problem. To be able to precisely assess the False Discovery Rate (FDR), in this work we compared different samples obtained from the very same metabolic model. We compared the FDR obtained for different model scales, sample sizes, parameters of the sampling algorithm, and strategies to filter out non-significant variations. To be able to compare the largely used hit-and-run strategy with the much less investigated corner-based strategy, we first assessed the intrinsic capability of current corner-based algorithms and of a newly proposed one to visit all vertices of a constraint-based region. We show that false discoveries can occur at high rates even for large samples of small-scale networks. However, we demonstrate that a statistical test based on the empirical null distribution of Kullback-Leibler divergence can effectively correct for false discoveries. We also show that our proposed corner-based algorithm is more efficient than state-of-the-art alternatives and much less prone to false discoveries than hit-and-run strategies. We report that the differences in the marginal distributions obtained with the two strategies are related to but not fully explained by differences in sample standard deviation, as previously thought. Overall, our study provides insights into the impact of sampling strategies on FDR in metabolic network analysis and offers new guidelines for more robust and reproducible analyses.


Assuntos
Análise do Fluxo Metabólico , Modelos Biológicos , Humanos , Algoritmos , Redes e Vias Metabólicas , Genômica
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903663

RESUMO

Aerobic fermentation, also referred to as the Crabtree effect in yeast, is a well-studied phenomenon that allows many eukaryal cells to attain higher growth rates at high glucose availability. Not all yeasts exhibit the Crabtree effect, and it is not known why Crabtree-negative yeasts can grow at rates comparable to Crabtree-positive yeasts. Here, we quantitatively compared two Crabtree-positive yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two Crabtree-negative yeasts, Kluyveromyces marxianus and Scheffersomyces stipitis, cultivated under glucose excess conditions. Combining physiological and proteome quantification with genome-scale metabolic modeling, we found that the two groups differ in energy metabolism and translation efficiency. In Crabtree-positive yeasts, the central carbon metabolism flux and proteome allocation favor a glucose utilization strategy minimizing proteome cost as proteins translation parameters, including ribosomal content and/or efficiency, are lower. Crabtree-negative yeasts, however, use a strategy of maximizing ATP yield, accompanied by higher protein translation parameters. Our analyses provide insight into the underlying reasons for the Crabtree effect, demonstrating a coupling to adaptations in both metabolism and protein translation.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Leveduras/metabolismo , Aerobiose , Fermentação , Glucose/metabolismo , ATPases Mitocondriais Próton-Translocadoras , Proteoma , Especificidade da Espécie , Leveduras/genética
8.
BMC Bioinformatics ; 24(1): 364, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759157

RESUMO

In this paper, a fuzzy hierarchical optimization framework is proposed for identifying potential antiviral targets for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the heart. The proposed framework comprises four objectives for evaluating the elimination of viral biomass growth and the minimization of side effects during treatment. In the application of the framework, Dulbecco's modified eagle medium (DMEM) and Ham's medium were used as uptake nutrients on an antiviral target discovery platform. The prediction results from the framework reveal that most of the antiviral enzymes in the aforementioned media are involved in fatty acid metabolism and amino acid metabolism. However, six enzymes involved in cholesterol biosynthesis in Ham's medium and three enzymes involved in glycolysis in DMEM are unable to eliminate the growth of the SARS-CoV-2 biomass. Three enzymes involved in glycolysis, namely BPGM, GAPDH, and ENO1, in DMEM combine with the supplemental uptake of L-cysteine to increase the cell viability grade and metabolic deviation grade. Moreover, six enzymes involved in cholesterol biosynthesis reduce and fail to reduce viral biomass growth in a culture medium if a cholesterol uptake reaction does not occur and occurs in this medium, respectively.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Colesterol
9.
J Inherit Metab Dis ; 46(3): 421-435, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36371683

RESUMO

Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doenças Mitocondriais , Humanos , Células HEK293 , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Doenças Mitocondriais/metabolismo , Metilmalonil-CoA Mutase , Ácido Metilmalônico/metabolismo
10.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37704397

RESUMO

The biotechnological production of methyl ketones is a sustainable alternative to fossil-derived chemical production. To date, the best host for microbial production of methyl ketones is a genetically engineered Pseudomonas taiwanensis VLB120 ∆6 pProd strain, achieving yields of 101 mgg-1 on glucose in batch cultivations. For competitiveness with the petrochemical production pathway, however, higher yields are necessary. Co-feeding can improve the yield by fitting the carbon-to-energy ratio to the organism and the target product. In this work, we developed co-feeding strategies for P. taiwanensis VLB120 ∆6 pProd by combined metabolic modeling and experimental work. In a first step, we conducted flux balance analysis with an expanded genome-scale metabolic model of iJN1463 and found ethanol as the most promising among five cosubstrates. Next, we performed cultivations with ethanol and found the highest reported yield in batch production of methyl ketones with P. taiwanensis VLB120 to date, namely, 154 mg g-1 methyl ketones. However, ethanol is toxic to the cell, which reflects in a lower substrate consumption and lower product concentrations when compared to production on glucose. Hence, we propose cofeeding ethanol with glucose and find that, indeed, higher concentrations than in ethanol-fed cultivation (0.84 g Laq-1 with glucose and ethanol as opposed to 0.48 g Laq-1 with only ethanol) were achieved, with a yield of 85 mg g-1. In a last step, comparing experimental with computational results suggested the potential for improving the methyl ketone yield by fed-batch cultivation, in which cell growth and methyl ketone production are separated into two phases employing optimal ethanol to glucose ratios. ONE-SENTENCE SUMMARY: By combining computational and experimental work, we demonstrate that feeding ethanol in addition to glucose improves the yield of biotechnologically produced methyl ketones.


Assuntos
Acetona , Biotecnologia , Carbono , Etanol , Glucose
11.
BMC Bioinformatics ; 23(1): 226, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689204

RESUMO

BACKGROUND: Elucidating cellular metabolism led to many breakthroughs in biotechnology, synthetic biology, and health sciences. To date, deriving metabolic fluxes by 13C tracer experiments is the most prominent approach for studying metabolic fluxes quantitatively, often with high accuracy and precision. However, the technique has a high demand for experimental resources. Alternatively, flux balance analysis (FBA) has been employed to estimate metabolic fluxes without labeling experiments. It is less informative but can benefit from the low costs and low experimental efforts and gain flux estimates in experimentally difficult conditions. Methods to integrate relevant experimental data have been emerged to improve FBA flux estimations. Data from transcription profiling is often selected since it is easy to generate at the genome scale, typically embedded by a discretization of differential and non-differential expressed genes coding for the respective enzymes. RESULT: We established the novel method Linear Programming based Gene Expression Model (LPM-GEM). LPM-GEM linearly embeds gene expression into FBA constraints. We implemented three strategies to reduce thermodynamically infeasible loops, which is a necessary prerequisite for such an omics-based model building. As a case study, we built a model of B. subtilis grown in eight different carbon sources. We obtained good flux predictions based on the respective transcription profiles when validating with 13C tracer based metabolic flux data of the same conditions. We could well predict the specific carbon sources. When testing the model on another, unseen dataset that was not used during training, good prediction performance was also observed. Furthermore, LPM-GEM outperformed a well-established model building methods. CONCLUSION: Employing LPM-GEM integrates gene expression data efficiently. The method supports gene expression-based FBA models and can be applied as an alternative to estimate metabolic fluxes when tracer experiments are inappropriate.


Assuntos
Bacillus subtilis , Carbono , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Carbono/metabolismo , Expressão Gênica , Redes e Vias Metabólicas , Modelos Biológicos , Programação Linear
12.
FEMS Yeast Res ; 22(1)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35094064

RESUMO

Yeasts have been widely used for production of bread, beer and wine, as well as for production of bioethanol, but they have also been designed as cell factories to produce various chemicals, advanced biofuels and recombinant proteins. To systematically understand and rationally engineer yeast metabolism, genome-scale metabolic models (GEMs) have been reconstructed for the model yeast Saccharomyces cerevisiae and nonconventional yeasts. Here, we review the historical development of yeast GEMs together with their recent applications, including metabolic flux prediction, cell factory design, culture condition optimization and multi-yeast comparative analysis. Furthermore, we present an emerging effort, namely the integration of proteome constraints into yeast GEMs, resulting in models with improved performance. At last, we discuss challenges and perspectives on the development of yeast GEMs and the integration of proteome constraints.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Biocombustíveis , Engenharia Metabólica/métodos , Proteoma/metabolismo , Estudos Retrospectivos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(35): 17592-17597, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405984

RESUMO

Cells require energy for growth and maintenance and have evolved to have multiple pathways to produce energy in response to varying conditions. A basic question in this context is how cells organize energy metabolism, which is, however, challenging to elucidate due to its complexity, i.e., the energy-producing pathways overlap with each other and even intertwine with biomass formation pathways. Here, we propose a modeling concept that decomposes energy metabolism into biomass formation and ATP-producing pathways. The latter can be further decomposed into a high-yield and a low-yield pathway. This enables independent estimation of protein efficiency for each pathway. With this concept, we modeled energy metabolism for Escherichia coli and Saccharomyces cerevisiae and found that the high-yield pathway shows lower protein efficiency than the low-yield pathway. Taken together with a fixed protein constraint, we predict overflow metabolism in E. coli and the Crabtree effect in S. cerevisiae, meaning that energy metabolism is sufficient to explain the metabolic switches. The static protein constraint is supported by the findings that protein mass of energy metabolism is conserved across conditions based on absolute proteomics data. This also suggests that enzymes may have decreased saturation or activity at low glucose uptake rates. Finally, our analyses point out three ways to improve growth, i.e., increasing protein allocation to energy metabolism, decreasing ATP demand, or increasing activity for key enzymes.


Assuntos
Metabolismo Energético , Fenótipo , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Biológicos , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Plant J ; 103(6): 2168-2177, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656814

RESUMO

Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measured in vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximal in vivo catalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements from Arabidopsis thaliana rosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings in Escherichia coli, we demonstrate weaker concordance between the plant-specific in vitro and in vivo enzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximal in vivo catalytic rates, and available quantitative metabolomics data are below reported KM values and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Arabidopsis/enzimologia , Catálise , Complexo Citocromos b6f/metabolismo , Glucosiltransferases/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
15.
Microb Cell Fact ; 20(1): 22, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482812

RESUMO

BACKGROUND: A considerable challenge in the development of bioprocesses for producing chemicals and fuels has been the high cost of feedstocks relative to oil prices, making it difficult for these processes to compete with their conventional petrochemical counterparts. Hence, in the absence of high oil prices in the near future, there has been a shift in the industry to produce higher value compounds such as fragrances for cosmetics. Yet, there is still a need to address climate change and develop biotechnological approaches for producing large market, lower value chemicals and fuels. RESULTS: In this work, we study ethylene glycol (EG), a novel feedstock that we believe has promise to address this challenge. We engineer Escherichia coli (E. coli) to consume EG and examine glycolate production as a case study for chemical production. Using a combination of modeling and experimental studies, we identify oxygen concentration as an important metabolic valve in the assimilation and use of EG as a substrate. Two oxygen-based strategies are thus developed and tested in fed-batch bioreactors. Ultimately, the best glycolate production strategy employed a target respiratory quotient leading to the highest observed fermentation performance. With this strategy, a glycolate titer of 10.4 g/L was reached after 112 h of production time in a fed-batch bioreactor. Correspondingly, a yield of 0.8 g/g from EG and productivity of 0.1 g/L h were measured during the production stage. Our modeling and experimental results clearly suggest that oxygen concentration is an important factor in the assimilation and use of EG as a substrate. Finally, our use of metabolic modeling also sheds light on the intracellular distribution through central metabolism, implicating flux to 2-phosphoglycerate as the primary route for EG assimilation. CONCLUSION: Overall, our work suggests that EG could provide a renewable starting material for commercial biosynthesis of fuels and chemicals that may achieve economic parity with petrochemical feedstocks while sequestering carbon dioxide.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli/metabolismo , Etilenoglicol/metabolismo , Fermentação , Glicolatos/metabolismo , Engenharia Metabólica/métodos , Escherichia coli/genética , Formiatos/metabolismo , Glucose/metabolismo , Ácidos Glicéricos/metabolismo , Redes e Vias Metabólicas/genética , Oxigênio/metabolismo , Xilose/metabolismo
16.
Biotechnol Lett ; 43(1): 73-87, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33040240

RESUMO

OBJECTIVE: Chinese hamster ovary (CHO) cells are the leading cell factories for producing recombinant proteins in the biopharmaceutical industry. In this regard, constraint-based metabolic models are useful platforms to perform computational analysis of cell metabolism. These models need to be regularly updated in order to include the latest biochemical data of the cells, and to increase their predictive power. Here, we provide an update to iCHO1766, the metabolic model of CHO cells. RESULTS: We expanded the existing model of Chinese hamster metabolism with the help of four gap-filling approaches, leading to the addition of 773 new reactions and 335 new genes. We incorporated these into an updated genome-scale metabolic network model of CHO cells, named iCHO2101. In this updated model, the number of reactions and pathways capable of carrying flux is substantially increased. CONCLUSIONS: The present CHO model is an important step towards more complete metabolic models of CHO cells.


Assuntos
Células CHO/metabolismo , Genoma/genética , Redes e Vias Metabólicas/genética , Modelos Biológicos , Biologia de Sistemas/métodos , Animais , Cricetinae , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(44): 11339-11344, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309961

RESUMO

The structure of the metabolic network contains myriad organism-specific variations across the tree of life, but the selection basis for pathway choices in different organisms is not well understood. Here, we examined the metabolic capabilities with respect to cofactor use and pathway thermodynamics of all sequenced organisms in the Kyoto Encyclopedia of Genes and Genomes Database. We found that (i) many biomass precursors have alternate synthesis routes that vary substantially in thermodynamic favorability and energy cost, creating tradeoffs that may be subject to selection pressure; (ii) alternative pathways in amino acid synthesis are characteristically distinguished by the use of biosynthetically unnecessary acyl-CoA cleavage; (iii) distinct choices preferring thermodynamic-favorable or cofactor-use-efficient pathways exist widely among organisms; (iv) cofactor-use-efficient pathways tend to have a greater yield advantage under anaerobic conditions specifically; and (v) lysine biosynthesis in particular exhibits temperature-dependent thermodynamics and corresponding differential pathway choice by thermophiles. These findings present a view on the evolution of metabolic network structure that highlights a key role of pathway thermodynamics and cofactor use in determining organism pathway choices.


Assuntos
Vias Biossintéticas/genética , Evolução Biológica , Biomassa , Bases de Dados Genéticas , Genoma/genética , Redes e Vias Metabólicas/genética , Filogenia , Termodinâmica
18.
BMC Bioinformatics ; 21(1): 510, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33167871

RESUMO

BACKGROUND: The concept of minimal cut sets (MCS) has become an important mathematical framework for analyzing and (re)designing metabolic networks. However, the calculation of MCS in genome-scale metabolic models is a complex computational problem. The development of duality-based algorithms in the last years allowed the enumeration of thousands of MCS in genome-scale networks by solving mixed-integer linear problems (MILP). A recent advancement in this field was the introduction of the MCS2 approach. In contrast to the Farkas-lemma-based dual system used in earlier studies, the MCS2 approach employs a more condensed representation of the dual system based on the nullspace of the stoichiometric matrix, which, due to its reduced dimension, holds promise to further enhance MCS computations. RESULTS: In this work, we introduce several new variants and modifications of duality-based MCS algorithms and benchmark their effects on the overall performance. As one major result, we generalize the original MCS2 approach (which was limited to blocking the operation of certain target reactions) to the most general case of MCS computations with arbitrary target and desired regions. Building upon these developments, we introduce a new MILP variant which allows maximal flexibility in the formulation of MCS problems and fully leverages the reduced size of the nullspace-based dual system. With a comprehensive set of benchmarks, we show that the MILP with the nullspace-based dual system outperforms the MILP with the Farkas-lemma-based dual system speeding up MCS computation with an averaged factor of approximately 2.5. We furthermore present several simplifications in the formulation of constraints, mainly related to binary variables, which further enhance the performance of MCS-related MILP. However, the benchmarks also reveal that some highly condensed formulations of constraints, especially on reversible reactions, may lead to worse behavior when compared to variants with a larger number of (more explicit) constraints and involved variables. CONCLUSIONS: Our results further enhance the algorithmic toolbox for MCS calculations and are of general importance for theoretical developments as well as for practical applications of the MCS framework.


Assuntos
Algoritmos , Redes e Vias Metabólicas/genética , Corynebacterium/genética , Escherichia coli/genética , Genoma , Engenharia Metabólica , Modelos Biológicos , Saccharomyces cerevisiae/genética
19.
J Theor Biol ; 501: 110317, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32446743

RESUMO

Integrated modeling of metabolism and gene regulation continues to be a major challenge in computational biology. While there exist approaches like regulatory flux balance analysis (rFBA), dynamic flux balance analysis (dFBA), resource balance analysis (RBA) or dynamic enzyme-cost flux balance analysis (deFBA) extending classical flux balance analysis (FBA) in various directions, there have been no constraint-based methods so far that allow predicting the dynamics of metabolism taking into account both macromolecule production costs and regulatory events. In this paper, we introduce a new constraint-based modeling framework named regulatory dynamic enzyme-cost flux balance analysis (r-deFBA), which unifies dynamic modeling of metabolism, cellular resource allocation and transcriptional regulation in a hybrid discrete-continuous setting. With r-deFBA, we can predict discrete regulatory states together with the continuous dynamics of reaction fluxes, external substrates, enzymes, and regulatory proteins needed to achieve a cellular objective such as maximizing biomass over a time interval. The dynamic optimization problem underlying r-deFBA can be reformulated as a mixed-integer linear optimization problem, for which there exist efficient solvers.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Biomassa , Regulação da Expressão Gênica , Análise do Fluxo Metabólico
20.
BMC Bioinformatics ; 20(1): 56, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691403

RESUMO

BACKGROUND: Genome-scale metabolic network reconstructions are low level chemical representations of biological organisms. These models allow the system-level investigation of metabolic phenotypes using a variety of computational approaches. The link between a metabolic network model and an organisms' higher-level behaviour is usually found using a constraint-based analysis approach, such as FBA (Flux Balance Analysis). However, the process of model reconstruction rarely proceeds without error. Often, considerable parts of a model cannot carry flux under any condition. This is termed model inconsistency and is caused by faulty topology and/or stoichiometry of the underlying reconstructed network. While there exist several automated gap-filling tools that may solve some of the inconsistencies, much of the work still needs to be carried out manually. The common "linear list" format of writing biochemical reactions makes it difficult to intuit what is at the root of the inconsistent behaviour. Unfortunately, we have frequently observed that model builders do not correct their models past the abilities of automated tools, leaving many widely used models significantly inconsistent. RESULTS: We have developed the software ModelExplorer, which main purpose is to fill this gap by providing an intuitive and visual framework that allows the user to explore and correct inconsistencies in genome-scale metabolic models. The software will automatically visualize metabolic networks as graphs with distinct separation and delineation of cellular compartments. ModelExplorer highlights reactions and species that are unable to carry flux (blocked), with several different consistency checking modes available. Our software also allows the automatic identification of neighbours and production pathways of any species or reaction. Additionally, the user may focus on any chosen inconsistent part of the model on its own. This facilitates a rapid and visual identification of reactions and species responsible for model inconsistencies. Finally, ModelExplorer lets the user freely edit, add or delete model elements, allowing straight-forward correction of discovered issues. CONCLUSION: Overall, ModelExplorer is currently the fastest real-time metabolic network visualization program available. It implements several consistency checking algorithms, which in combination with its set of tracking tools, gives an efficient and systematic model-correction process.


Assuntos
Genoma , Redes e Vias Metabólicas/genética , Software , Algoritmos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA