Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Comput Chem ; 45(12): 834-842, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38146809

RESUMO

In this work, we investigate the spectroscopic properties of photochromic alexandrite and cordierite by TD-DFT. The objective is to assess the TD-DFT for the simulation of pleochroism (change of color depending on the crystallographic direction of the observation) and the change of color as a function of the light source. For these simulations, we compared an embedding where dangling bonds are saturated by hydrogen atoms and an electrostatic embedding. The electrostatic embedding provided numerically more stable results and allowed a good reproduction of the pleochroism of cordierite, based on a Fe2+-Fe3+ intervalence charge transfer transition. However, the pleochroism of alexandrite is not as well reproduced, suggesting that TD-DFT has some difficulties to reproduce the anisotropy of the transition dipole moment, an aspect that is not deeply documented in the literature.

2.
J Environ Sci (China) ; 112: 231-243, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955207

RESUMO

A series of Co-Mn mixed oxide catalyst supported on a cordierite monolith was facilely synthesized by ultrasonic impregnation. Its catalytic performance was evaluated in the combustion of toluene, ethyl acetate and its mixture. It was observed that with incorporating Mn into Co3O4, the formation of solid solution with spinel structure could significantly improve the catalytic activity of pure phase Co3O4. And the monolithic Co0.67Mn0.33Ox catalyst showed the best catalytic performance in the catalytic oxidation of toluene and ethyl acetate which could be completely oxidized at 220 and 180°C respectively under the reaction velocity (WHSV) about 45,000 mL/(g•hr) and pollutant concentration of 500 ppmV. The total conversion temperature of the VOCs mixture was at 230°C (500 ppmV toluene and 500 ppmV ethyl acetate) and determined by the temperature at which the most difficult molecule was oxidized. The excellent catalytic performance of monolithic Co0.67Mn0.33Ox was attributed to the higher content of Mn3+, Co3+, surface adsorbed oxygen and better redox ability. The prepared catalyst showed the good mechanical stability, reaction stability, and good adaptability to different reaction conditions.


Assuntos
Óxidos , Catálise , Cerâmica , Cobalto , Oxirredução
3.
J Environ Manage ; 293: 112873, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082346

RESUMO

In this study, a specific diesel fuel is experimentally tested in a 4-cylindered diesel engine with and without a cordierite-based diesel particulate filter (CPF) to show the prevention of emissions by using an after treatment system (ATS). In this context, engine exhaust emissions, total particle concentration (TPC) and soot concentration are investigated. The diesel engine is firstly evaluated with the data directly measured from the engine output (DEO) (without after treatment option), and then the changes in the exhaust emission are examined by using an ATS which is a cordierite-based diesel particulate filter to prevent pollution. In this regard, total particle concentration of DEO option is found to be 6134041.20 1/cm3 and total particle concentration by using CPF is obtained to be 707.84 1/cm3. 99.99% reduction in TPC is achieved thanks to the use of CPF. The soot concentration of DEO option is calculated to be 2.158 mg/m3. However, the soot concentration is found to be 0.014 mg/m3 by using the CPF. The particulate matters are burned at high temperatures after being filtered at the exhaust output thanks to the regeneration process within the CPF after treatment. CO emissions decreased from 0.7489 g/kWh to 0.7273 g/kWh with the CPF utilization, while HC emissions decreased from 0.0965 g/kWh to 0.0900 g/kWh via CPF. However, an increase in CO2 and NOx emissions are observed due to oxidation in the CPF.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Cerâmica , Conservação dos Recursos Naturais , Gasolina/análise , Material Particulado/análise , Emissões de Veículos/análise
4.
Molecules ; 24(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818013

RESUMO

Anatase nanoparticles in suspension have demonstrated high photoactivity that can be exploited for pollutant removal in water phases. The main drawback of this system is the difficulty of recovering (and eventually reusing) the nanoparticles after their use, and the possible interference of inorganic salts (e.g., sulfates) that can reduce the performance of the photocatalyst. The present work describes the development of a cordierite-honeycomb-supported TiO2 film to eliminate the problems of catalyst recovery. The catalyst was then tested against phenol in the presence of increasing concentrations of sulfates in a specially developed recirculating modular photoreactor, able to accommodate the supported catalyst and scalable for application at industrial level. The effect of SO42- was evaluated at different concentrations, showing a slight deactivation only at very high sulfate concentration (≥3 g L-1). Lastly, in the framework of the EU project Project Ô, the catalyst was tested in the treatment of real wastewater from a textile company containing a relevant concentration of sulfates, highlighting the stability of the photocatalyst.


Assuntos
Cerâmica/química , Fenóis/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Nanopartículas/química , Fotólise/efeitos dos fármacos , Titânio/química
5.
J Environ Manage ; 213: 392-399, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29505994

RESUMO

The MnO2-mullite-cordierite composite particle (MnO2-MCP) was prepared and firstly was applied as catalyst with sodium hypochlorite (NaOCl) as oxidant in heterogeneous Fenton-like system for methylene blue (MB) decolorization. The MnO2-MCP was characterized by XRD, SEM, EDS and BET analysis. The decolorization efficiencies of MB/MnO2-MCP, MB/NaClO, (MB after filtrating MnO2-MCP)/NaClO and MB/MnO2-MCP/NaClO were compared, which confirmed the interaction ability between MnO2-MCP and NaClO. After evaluating the role of adsorption of MB by MnO2-MCP, the catalytic oxidation effects of MnO2-MCP with NaClO on MB were exploited. The adsorption results showed that the new porous catalyst had certain adsorption capacity for MB and the adsorption fit best with Langmuir model. The central composite rotatable design (CCD) of response surface methodology (RSM) was used to design catalytic oxidation experiments of MB/MnO2-MCP/NaClO system, with influencing factors of catalyst dose, NaClO concentration, pH and initial MB concentration. The optimum conditions were 5.97 mM of NaClO, 37.9 g/L of catalyst dose, 5.74 of pH value and 100.71 mg/L of initial MB concentration, which could ensure nearly 100% MB decolorization. The effect of radical scavengers elucidated that superoxide anion (O2-) was the main species to decolorize MB. Then the possible degradation mechanism and pathway of MB were proposed in this MnO2-MCP/NaClO system.


Assuntos
Silicatos de Alumínio , Purificação da Água , Cerâmica , Concentração de Íons de Hidrogênio , Azul de Metileno/isolamento & purificação
6.
J Environ Sci (China) ; 73: 58-68, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30290872

RESUMO

We report the application of a solid lanthanum-ceria-zinc catalyst in the catalytic regeneration of diesel particulate filters (DPF) in diesel engines. We synthesized a CeO2-ZnO-La2O3 (Ce-Zn-La) mixed oxide by a lactic acid-mediated sol-gel method, which efficiently coated cordierite substrates for soot capture and combustion. We studied the effects of La loading on the physicochemical and catalytic properties of Ce-Zn mixed oxide during low-temperature soot combustion processes. We characterized the synthesized catalysts by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption, Raman spectroscopy, oxygen storage capacity (OSC), and scanning and transmission electron microscopy (SEM and TEM). Thermogravimetric and differential thermal analysis (TGA/DTA) confirmed that the catalysts effectively reduced the soot oxidation temperature. The ternary Ce-Zn-La mixed oxide catalyst with Ce/Zn/La atomic ratio of 2:1:0.5 had the highest catalytic activity and promoted soot oxidation at temperatures below 390°C. This indicated that the large number of oxygen vacancies in the catalyst structure generated oxygen species at low temperatures. Raman spectroscopy measurements revealed the presence of oxygen vacancies and lattice defects in Ce-Zn-La samples, which were key parameters concerning the stability and redox properties of the prepared catalysts.


Assuntos
Poluentes Atmosféricos/química , Cerâmica/química , Cério/química , Lantânio/química , Emissões de Veículos , Óxido de Zinco/química , Poluição do Ar/prevenção & controle , Catálise , Modelos Químicos , Oxirredução , Fuligem/química
7.
J Environ Sci (China) ; 28: 171-7, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25662252

RESUMO

Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Fuligem/química , Óxido de Alumínio/química , Compostos de Cromo/química , Cobre/química , Óxido de Magnésio/química , Minerais/química , Oxirredução , Emissões de Veículos/análise
8.
Environ Sci Pollut Res Int ; 30(13): 37535-37546, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36574117

RESUMO

A series of CuMnOx/CeO2/cordierite and CuMnCeOx/cordierite catalysts prepared by a complex method with citric acid were investigated for the performance of chlorobenzene (CB) oxidation. The effects of the molar ratio of Mn/Cu, transition metal oxide loading, calcination temperature and time were investigated as the main investigation factor for the performance. Meanwhile, XRD, SEM, BET, H2-TPR, O2-TPD and XPS were conducted to characterize the physicochemical properties of these catalysts. The results demonstrated that CuMnOx/CeO2/cordierite catalysts prepared by step-by-step synthesis with the Cu/Mn molar ratio of 5:2 exhibited a high activity (T90 = 350 °C), owing to the incorporation of CuO and MnOx for forming CuMn2O4 spinel oxide supported on CeO2 surface. More importantly, CuMnCeOx/cordierite catalysts prepared by one-step exhibited the highest oxidation activity (T90 < 300 °C) attributed to the low H2 reduction temperature and desorption energy of surface oxygen, and the formed Cu-Mn-O-Ce solid solution and CeO2 promoted the high dispersion of CuMnOx in the supported catalysts. In addition, the possible oxidation mechanism was described to demonstrate the by-products generation and oxygen transfer of CuMnCeOx catalysts.


Assuntos
Clorobenzenos , Óxidos , Oxirredução , Óxidos/química , Catálise , Oxigênio
9.
Chemosphere ; 313: 137619, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563728

RESUMO

Catalyst is the key to effective selective catalytic reduction of nitrogen oxide, and developing catalyst is always one of the hottest topics in both field of industry and academy. In order to realize an industrial application, one catalyst must grow on a specific support. However, seldom work compared the difference of catalyst growth with or without support. In this work, Mn2+ growth on cordierite (a typical commercial catalyst support) was investigated. The formed active species were detailedly characterized. As a result, orthorhombic cordierite guided Mn2+ to form orthorhombic oxide (γ-MnO2). In comparison, Mn2+ preferred to form tetragonal ß-MnO2 without the guide of cordierite. During the synthesis, cordierite and citric acid promoted γ-MnO2 dispersion, increased growth of exposed (301) facet, and created lattice distortion between (301) and (101) planes. ß-MnO2 mainly exposed (101) facet. The best catalyst was γ-MnO2, which was mostly dominated by (301) facet and had an obvious lattice distortion from 75° to 78° between (301) and (101) planes. In comparison, 0.1 g of the γ-MnO2 reached a catalytic conversion rate 1.6 times bigger than 1.0 g of ß-MnO2 at 250 °C. This work helps to understand guiding effect of support on formed catalytic species, which is in favor of developing effective commercial catalysts for environmental pollutants.


Assuntos
Compostos de Manganês , Óxidos , Ácido Cítrico , Óxidos de Nitrogênio/química , Óxido Nítrico , Catálise
10.
Sci Total Environ ; 887: 163943, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37156375

RESUMO

Arsenic toxicity in drinking water is a global issue, with chronic exposure causing cancer and other health concerns. Groundwater from geochemically similar granites from mainland Nova Scotia, Canada, can have high and low levels of arsenic. The origin of this variation is uncertain, but different mineral hosts for arsenic could explain the disparity. The lability of arsenic from different minerals was assessed using laser ablation inductively coupled plasma mass spectrometry combined with calculations based upon well water data. Pyrite has the highest arsenic concentration (mean: 2300 µg/g, n = 9), is unstable in the groundwater system, and can release arsenic during oxidation. However, oxidation products replacing pyrite can adsorb arsenic, modifying the amount released. Cordierite has low arsenic concentrations (mean: 7.3 µg/g, n = 5) but is abundant and relatively soluble. Thus, cordierite could be a previously unrecognized source of arsenic in metapelitic rocks from metamorphic terranes. Pyrite from one of the granites studied was not oxidized, which in addition to the absence of cordierite in these same granites could account for the lower arsenic levels observed in associated well water. The results of this study can be used to identify potential geogenic sources of arsenic in other granitic terranes and reduce the risk of exposure through drinking water.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Água Potável/análise , Nova Escócia , Monitoramento Ambiental/métodos , Água Subterrânea/química , Minerais/análise , Poluentes Químicos da Água/análise
11.
Materials (Basel) ; 15(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556564

RESUMO

Single-phase α-cordierite glass-ceramics for a low-temperature co-fired ceramic (LTCC) substrate were fabricated from tuff as the main raw material, using the non-stoichiometric formula of α-cordierite with excess MgO without adding any sintering additives. The sintering/crystallization behavior and the various performances of dielectric properties, thermal expansion, and flexural strength of the glass-ceramics were detected. The results indicated that only single-phase α-cordierite crystal was precipitated from the basic glass sintered at the range 875-950 °C, and µ-cordierite crystal was not observed during the whole sintering-crystallization process. The properties of glass-ceramics were first improved and then deteriorated with the increase in tuff content and sintering temperature. Fortunately, the glass-ceramics sintered at 900 °C with 45 wt.% tuff content possessed excellent properties: high densify (2.62 g∙cm-3), applicable flexural strength (136 MPa), low dielectric loss (0.010, at 10 MHz), low dielectric constant (5.12, at 10 MHz, close to α-cordierite), and suitable coefficients of thermal expansion (CTE, 3.89 × 10-6 K-1).

12.
Materials (Basel) ; 15(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591744

RESUMO

Porous cordierite ceramics (PCCs) with stable 3D microstructures were prepared by Pickering emulsion technique using sucrose as a porogen. The microstructural and mechanical properties could be adjusted by varying O/S ratios, sintering temperature, and sucrose content. The formation of the spherical structure was due to the broken oil bubbles. The appearance of cordierite and the concurrent consumption of sucrose were responsible for the observation of gradient pore structure. When the O/S ratio was 2, the pore-structure-controlled PCCs with cordierite as the main phase was obtained after sintering at 1300 °C. With the addition of 30 wt.% of sucrose, the obtained PCCs possessed high solid content of 45 vol.%, the porosity of 90.83%, the compressive strength of 6.09 MPa, and the optimized thermal conductivity of 0.4794 W/m.K. Compared with the predecessors' research results, the as-prepared precursor of PCCs with sucrose content had the lowest initial Zeta potential without adjusting the pH to ensure the stable suspension. Our results showed that the addition of sucrose not only acts as a solvent to increase the solid content, but also acts as a pH modifier to maintain precursor stability, which enables the increase in compressive strength. In this work, via the scenario of "oil droplet" 3D accumulation, the stable and orderly spatial arrangement of the micro-emulsion system was successfully realized to obtain the structure-controlled PCCs by controlling the precursor conditions.

13.
Materials (Basel) ; 15(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35744342

RESUMO

This work aims to fabricate a large-area ceramic substrate for the application of probe cards. Mullite (M) and cordierite (C), which both have a low thermal expansion coefficient, excellent resistance to thermal shock, and high durability, were selected as starting powders. The mullite-cordierite composites were produced through different composition ratios of starting powders (M:C = 100:0, M:C = 90:10, M:C = 70:30, M:C = 50:50, M:C = 30:70, and M:C = 0:100). The effects of composition ratio and sintering temperature on the density, porosity, thermal expansion coefficient, and flexural strength of the mullite-cordierite composite pellets were investigated. The results showed that the mullite-cordierite composite pellet containing 70 wt% mullite and 30 wt% cordierite sintered at 1350 °C performed exceptionally well. Based on these findings, a large-area mullite-cordierite composite substrate with a diameter of 320 mm for use in semiconductor probe cards was successfully fabricated. Additionally, the changes in sheet resistance and flexural strength were measured to determine the effect of the environmental tests on the large-area substrate such as damp heat and thermal shock. The results indicated that the mullite-cordierite composite substrate was extremely reliable and durable.

14.
Heliyon ; 7(12): e08543, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917816

RESUMO

This study conducts Electron Probe Microanalysis (EPMA), X-ray Fluorescence (XRF) and Laser Ablation Inductively Coupled Plasma Spectrometry (LA-ICP-MS) analysis on the pelitic gneiss of the Basement complex of Nigeria. Phase equilibrium modeling was undertaken in the MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2 (MnNCKFMASHTO) chemical system using THERMOCALC. The rock comprises of sillimanite + biotite + garnet + K-feldspar + quartz + ilmenite + plagioclase ± cordierite. Garnet has inclusions of sillimanite, biotite, and quartz. There is a very close association between biotite and sillimanite. Fibrolitic and prismatic sillimanite are both present. Fibrolitic sillimanite surrounding biotite could have possibly formed through melt-residue back reactions involving crystallization of melt. Garnet has almandine higher than 60 % and pyrope less than 33 %. Plagioclase feldspar has anorthite content between 29 and 39 %, comprising of both oligoclase and andesine. Microtextures such as cordierite corona round garnet, symplectite and kinked biotite were observed. The textural association indicates that cordierite was formed at the expense of garnet and sillimanite; garnet + sillimanite + plagioclase => cordierite + melt/fluid. Metamorphic peak conditions of 770-840 °C and 5.5-7 kbar were obtained for the mineral assemblage garnet-biotite-sillimanite-K-feldspar-quartz indicating medium-pressure granulite facies metamorphism.

15.
Environ Sci Pollut Res Int ; 28(28): 37142-37157, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33709317

RESUMO

In order to explore a superior washcoat material to give full play to the catalytic activity of perovskite active components on the monolithic catalysts, three novel types of LaCoO3/washcoat/cordierite monolith catalysts were prepared by a facile two-step procedure which employed the cordierite honeycomb ceramic as the monolith substrate, the nano-oxides (ZrO2, ɤ-Al2O3, TiO2) as the washcoat, and the perovskite of LaCoO3 as the active components. The blank cordierite, powdered LaCoO3, semi-manufactured monolithic catalysts (washcoat/cordierite), and manufactured monolithic catalysts (LaCoO3/washcoat/cordierite) were characterized by XRD, SEM, XPS, N2 adsorption-desorption, H2-TPR, and ultrasonic test, and their catalytic activities and catalytic stability were evaluated by the toluene oxidation test. The research results indicate that the nanoparticles coated on the cordierite substrate as the washcoat can give full play to the catalytic ability of the LaCoO3 active components and also showed high catalytic stability. However, the catalytic properties of the monolithic catalysts vary notably with the species of nano-washcoat. Among all the catalysts, the porous honeycomb surface structure, uniform distribution, high ratio of surface adsorbed oxygen, and strong reducing ability together give the LaCoO3/ZrO2/cordierite monolithic catalyst the highest catalytic activity on the oxidation of toluene at low temperature, which could be attributed to the excellent interactions of perovskite and nano-ZrO2 washcoat. Therefore, the nano-oxides, especially the nano-ZrO2, have a broad practical application potential for toluene oxidation at low temperature as the washcoat of perovskite-based monolithic catalysts.


Assuntos
Compostos de Cálcio , Óxidos , Catálise , Oxirredução , Titânio
16.
Ultrason Sonochem ; 72: 105404, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33341709

RESUMO

Platinum group metals, such as Pd and Pt, found in three-way catalyst converters were recycled in a two-step method: hydrodynamic cavitation followed by sonoelectrochemical dissolution. High shear forces were obtained by using a convergent nozzle with a throat diameter of 0.2 mm, feeded by a plunger pump at a pressure of 60 MPa. Cavitating submerged jets acted locally on the water dispersed waste catalyst. As-obtained samples were analyzed by scanning electron microscopy and transmission electron microscopy. Electron microscopy on the initial sample showed that round shaped Pd and Pt nanoparticles were randomly distributed on the Al2O3 matrix. Cavitated samples show two zones in which Pt and Pd were partially and completely separated from the cordierite. The hydrodynamic cavitation separates the Pd and Pt from the cordierite leading to an apparent increase in Pd and Pt concentrations of 9% and 34% respectively. Conventional electrochemistry showed a dissolution of 20% in 1 h. To further accelerate the dissolution, a sonotrode operating at 20 kHz and 75 W was placed inside an electrochemical cell in order to increase the mass transport and obtain high dissolution rates. Indeed, the results showed that 40% of the available Pd and Pt can be recycled in just 1 h. In the absence of hydrodynamic cavitation and using conventional electrochemistry less than 10% of the available Pt and Pd is recovered in 1 h. The cost analysis showed that Pd and Pt can be recovered at less than 10 EUR per g which is 5 times smaller than their current market price.

17.
Materials (Basel) ; 14(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300949

RESUMO

Glass-ceramic composites containing cordierite, mullite, SiO2 glass and SiO2-B2O3-Al2O3-BaO-ZrO2 glass were fabricated in a process comprising solid state synthesis, milling, pressing and sintering. Thermal behavior, microstructure, composition and dielectric properties in the Hz-MHz, GHz and THz ranges were examined using a heating microscope, differential thermal analysis, thermogravimetry, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction analysis, impedance spectroscopy, transmission method and time domain spectroscopy (TDS). The obtained substrates exhibited a low dielectric permittivity of 4.0-4.8. Spontaneously formed closed porosity dependent on the sintering conditions was considered as a factor that decreased the effective dielectric permittivity.

18.
Nanomaterials (Basel) ; 10(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121547

RESUMO

A Ni/CeO2/ZrO2 catalyst with improved redox properties has been washcoated onto a honeycomb cordierite monolith in the form of a nonconventional alumina-catalyst layer, just a few nanometers thick. In spite of the very low active phase loading, the monolith depicts outstanding performance in dry reforming of methane, both in terms of activity, with values reaching the thermodynamic limit already at 750 °C, even under extreme Weight Hourly Space Velocities (WHSV 115-346 L·g-1·h-1), as well as in terms of stability during prolonged Time on Stream (TOS 24-48 h).

19.
Environ Technol ; 41(13): 1664-1676, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30379618

RESUMO

A series of MnOx-CeO2 catalysts with MOx doping (M = Cu, Fe, Co and La) supported on cordierite were synthesized by the citric acid complex method, showing preferable catalytic oxidation of chlorobenzene. The distribution of active oxides, surface areas, as well as the structural morphology of M-MnOx-CeO2 catalysts varied with the different Mn/Ce and M/Mn molar ratios. Meanwhile, physicochemical properties of these catalysts were characterized by XRD, BET, SEM, TEM, H2-TPR and IR. More importantly, the catalytic oxidation routes were also investigated where the process was from chlorobenzene to CO2, H2O, HCl and other by-products for the FeOx-MnOx-CeO2 and CuO-MnOx-CeO2 catalysts. The CuO-MnOx-CeO2 catalysts showed a higher chlorobenzene conversion, and the measured light-off temperature T90 was approximately 400°C. However, a large amount of chloropropane as main by-products was observed. For the FeOx-MnOx-CeO2 catalysts, more carbon monoxide could be found with inadequate oxidation. Comparative analyses of two catalysts indicated that the main cause of the oxidation activities and mechanisms were different in the oxidation capacity and water absorbability of FeOx and CuO. Nevertheless, all of these catalysts did not exhibit any deactivation due to chloride with a high reaction temperature, with chloride transformed to form HCl in the off-gas stream.


Assuntos
Clorobenzenos , Catálise , Cerâmica , Cobre , Oxirredução
20.
Environ Sci Pollut Res Int ; 27(19): 23695-23706, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32297112

RESUMO

Low-value solid waste cordierite honeycomb ceramics were used as carrier of SCO denitration catalyst, and the active component was supported by the impregnation method to improve the performance of the catalyst. Firstly, the effect of calcination conditions on the denitration performance of the Mn-loaded cordierite catalyst was studied for the cordierite-loaded active component MnOX. Secondly, the preferred catalyst was reloaded with another active component to further improve its denitration performance; the bimetal ratios were affected by the denitration performance, which was, finally, characterized by XRD, XPS, and SEM. The result shows the following: (1) Mn-loaded cordierite prepared at 450 °C for 3 h has a good denitration effect; (2) the MnOX-CuOX/CR catalyst is superior to MnOX-FeOX/CR, MnOX-CoOX/CR, and MnOX-CeOX/CR; (3) the MnO2 crystal form in the single metal-supported catalyst plays a major role, and Cu2Mn3O8 in the bimetallic catalyst affects the performance and activity of the catalyst. Graphical abstract.


Assuntos
Compostos de Manganês , Óxidos , Catálise , Cerâmica , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA