Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(8): 921-936, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39037520

RESUMO

There are substantial gaps in our empirical knowledge of the effects of chemical exposure on aquatic life that are unlikely to be filled by traditional laboratory toxicity testing alone. One possible alternative of generating new toxicity data is cross-species extrapolation (CSE), a statistical approach in which existing data are used to predict the effect of a chemical on untested species. Some CSE models use relatedness as a predictor of chemical sensitivity, but relatively little is known about how strongly shared evolutionary history influences sensitivity across all chemicals. To address this question, we conducted a survey of phylogenetic signal in the toxicity data from aquatic animal species for a large set of chemicals using a phylogeny inferred from taxonomy. Strong phylogenetic signal was present in just nine of thirty-six toxicity datasets, and there were no clear shared properties among those datasets with strong signal. Strong signal was rare even among chemicals specifically developed to target insects, meaning that these chemicals may be equally lethal to non-target taxa, including chordates. When signal was strong, distinct patterns of sensitivity were evident in the data, which may be informative when assembling toxicity datasets for regulatory use. Although strong signal does not appear to manifest in aquatic toxicity data for most chemicals, we encourage additional phylogenetic evaluations of toxicity data in order to guide the selection of CSE tools and as a means to explore the patterns of chemical sensitivity across the broad diversity of life.


Assuntos
Organismos Aquáticos , Filogenia , Poluentes Químicos da Água , Animais , Organismos Aquáticos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Testes de Toxicidade
2.
Pharm Res ; 38(11): 1863-1871, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34845574

RESUMO

OBJECTIVES: To describe micafungin pharmacokinetic (PK) alterations of sepsis induced in piglets and to determine whether the porcine septic model is able to predict the PK of micafungin in septic patients at the plasma and peritoneal sites. METHODS: From healthy (n = 8) and septic piglet group (n = 16), total micafungin concentrations were subject to a population PK analysis using Monolix®. Data from 16 septic humans patients from others studies was used to compare micafungin PK between septic piglets and septic patients. RESULTS: Sepsis induced in piglets slightly alters the total clearance and the volume of distribution, while inter-compartment clearance is increased (from 3.88 to 5.74 L/h) as well as the penetration into peritoneal cavity (from 61 to 90%). In septic human patients, PK parameters are similar except for the Vd, which is corrected by an allometric factor based on the body weight of each species. Micafungin penetration into peritoneal cavity of humans is lower than in septic piglets (40 versus 90%). CONCLUSIONS: The sepsis induced in the porcine model alters the PK of micafungin comparable to that in humans. In addition, micafungin PK is similar between these two species at the plasma level taking into account the allometric relationship of the body weight of these species on the central volume of distribution. The porcine septic plasma model would be able to predict the micafungin PK in the septic patients. However, further studies on peritoneal penetration are necessary to characterize this inter-species difference.


Assuntos
Antifúngicos/farmacocinética , Micafungina/farmacocinética , Sepse/tratamento farmacológico , Animais , Antifúngicos/administração & dosagem , Variação Biológica da População , Modelos Animais de Doenças , Feminino , Humanos , Micafungina/administração & dosagem , Peritônio/metabolismo , Sepse/sangue , Sepse/microbiologia , Especificidade da Espécie , Suínos
3.
Environ Sci Technol ; 55(13): 9109-9118, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165962

RESUMO

Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This "top-down" approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a "bottom-up" multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.


Assuntos
Peixes , Modelos Biológicos , Animais , Canadá , Medição de Risco , Toxicocinética
4.
Arch Toxicol ; 94(11): 3847-3860, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33033842

RESUMO

Physiology-based pharmacokinetic and toxicokinetic (PBPK/TK) models allow us to simulate the concentration of xenobiotica in the plasma and different tissues of an organism. PBPK/TK models are therefore routinely used in many fields of life sciences to simulate the physiological concentration of exogenous compounds in plasma and tissues. The application of PBTK models in ecotoxicology, however, is currently hampered by the limited availability of models for focal species. Here, we present a best practice workflow that describes how to build PBTK models for novel species. To this end, we extrapolated eight previously established rabbit models for several drugs to six additional mammalian species (human, beagle, rat, monkey, mouse, and minipig). We used established PBTK models for these species to account for the species-specific physiology. The parameter sensitivity in the resulting 56 PBTK models was systematically assessed to rank the relevance of the parameters on overall model performance. Interestingly, more than 80% of the 609 considered model parameters showed a negligible sensitivity throughout all models. Only approximately 5% of all parameters had a high sensitivity in at least one of the PBTK models. This approach allowed us to rank the relevance of the various parameters on overall model performance. We used this information to formulate a best practice guideline for the efficient development of PBTK models for novel animal species. We believe that the workflow proposed in this study will significantly support the development of PBTK models for new animal species in the future.


Assuntos
Avaliação de Medicamentos/métodos , Modelos Biológicos , Farmacocinética , Guias de Prática Clínica como Assunto , Animais , Cães , Haplorrinos , Camundongos , Coelhos , Ratos , Medição de Risco , Especificidade da Espécie , Suínos , Fluxo de Trabalho , Xenobióticos
5.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331419

RESUMO

ERGO (EndocRine Guideline Optimization) is the acronym of a European Union-funded research and innovation action, that aims to break down the wall between mammalian and non-mammalian vertebrate regulatory testing of endocrine disruptors (EDs), by identifying, developing and aligning thyroid-related biomarkers and endpoints (B/E) for the linkage of effects between vertebrate classes. To achieve this, an adverse outcome pathway (AOP) network covering various modes of thyroid hormone disruption (THD) in multiple vertebrate classes will be developed. The AOP development will be based on existing and new data from in vitro and in vivo experiments with fish, amphibians and mammals, using a battery of different THDs. This will provide the scientifically plausible and evidence-based foundation for the selection of B/E and assays in lower vertebrates, predictive of human health outcomes. These assays will be prioritized for validation at OECD (Organization for Economic Cooperation and Development) level. ERGO will re-think ED testing strategies from in silico methods to in vivo testing and develop, optimize and validate existing in vivo and early life-stage OECD guidelines, as well as new in vitro protocols for THD. This strategy will reduce requirements for animal testing by preventing duplication of testing in mammals and non-mammalian vertebrates and increase the screening capacity to enable more chemicals to be tested for ED properties.


Assuntos
Bioensaio , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/análise , Monitoramento Ambiental , Animais , Bioensaio/métodos , Biomarcadores , Data Warehousing , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/metabolismo , Monitoramento Ambiental/métodos , Avaliação do Impacto na Saúde , Implementação de Plano de Saúde , Humanos , Medição de Risco , Especificidade da Espécie , Fluxo de Trabalho
6.
Regul Toxicol Pharmacol ; 70(3): 629-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261300

RESUMO

Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes.


Assuntos
Medição de Risco/métodos , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Tomada de Decisões , Regulamentação Governamental , Ensaios de Triagem em Larga Escala , Humanos , Testes de Toxicidade
7.
Environ Toxicol Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980262

RESUMO

Although ecotoxicological and toxicological risk assessments are performed separately from each other, recent efforts have been made in both disciplines to reduce animal testing and develop predictive approaches instead, for example, via conserved molecular markers, and in vitro and in silico approaches. Among them, adverse outcome pathways (AOPs) have been proposed to facilitate the prediction of molecular toxic effects at larger biological scales. Thus, more toxicological data are used to inform on ecotoxicological risks and vice versa. An AOP has been previously developed to predict reproductive toxicity of silver nanoparticles via oxidative stress on the nematode Caenorhabditis elegans (AOPwiki ID 207). Following this previous study, our present study aims to extend the biologically plausible taxonomic domain of applicability (tDOA) of AOP 207. Various types of data, including in vitro human cells, in vivo, and molecular to individual, from previous studies have been collected and structured into a cross-species AOP network that can inform both human toxicology and ecotoxicology risk assessments. The first step was the collection and analysis of literature data to fit the AOP criteria and build a first AOP network. Then, key event relationships were assessed using a Bayesian network modeling approach, which gave more confidence in our overall AOP network. Finally, the biologically plausible tDOA was extended using in silico approaches (Genes-to-Pathways Species Conservation Analysis and Sequence Alignment to Predict Across Species Susceptibility), which led to the extrapolation of our AOP network across over 100 taxonomic groups. Our approach shows that various types of data can be integrated into an AOP framework, and thus facilitates access to knowledge and prediction of toxic mechanisms without the need for further animal testing. Environ Toxicol Chem 2024;00:1-14. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

8.
Toxicol Sci ; 193(2): 131-145, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37071731

RESUMO

The U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP) is tasked with assessing chemicals for their potential to perturb endocrine pathways, including those controlled by androgen receptor (AR). To address challenges associated with traditional testing strategies, EDSP is considering in vitro high-throughput screening assays to screen and prioritize chemicals more efficiently. The ability of these assays to accurately reflect chemical interactions in nonmammalian species remains uncertain. Therefore, a goal of the EDSP is to evaluate how broadly results can be extrapolated across taxa. To assess the cross-species conservation of AR-modulated pathways, computational analyses and systematic literature review approaches were used to conduct a comprehensive analysis of existing in silico, in vitro, and in vivo data. First, molecular target conservation was assessed across 585 diverse species based on the structural similarity of ARs. These results indicate that ARs are conserved across vertebrates and are predicted to share similarly susceptibility to chemicals that interact with the human AR. Systematic analysis of over 5000 published manuscripts was used to compile in vitro and in vivo cross-species toxicity data. Assessment of in vitro data indicates conservation of responses occurs across vertebrate ARs, with potential differences in sensitivity. Similarly, in vivo data indicate strong conservation of the AR signaling pathways across vertebrate species, although sensitivity may vary. Overall, this study demonstrates a framework for utilizing bioinformatics and existing data to build weight of evidence for cross-species extrapolation and provides a technical basis for extrapolating hAR-based data to prioritize hazard in nonmammalian vertebrate species.


Assuntos
Disruptores Endócrinos , Receptores Androgênicos , Animais , Estados Unidos , Humanos , Receptores Androgênicos/metabolismo , United States Environmental Protection Agency , Sistema Endócrino/química , Sistema Endócrino/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Ensaios de Triagem em Larga Escala/métodos
9.
Environ Adv ; 9: 100287, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39228468

RESUMO

Toxicology is traditionally divided between human and eco-toxicology. In the shared pursuit of environmental health, this separation does not account for discoveries made in the comparative studies of animal genomes. Here, we provide evidence on the feasibility of understanding the health impact of chemicals on all animals, including ecological keystone species and humans, based on a significant number of conserved genes and their functional associations to health-related outcomes across much of animal diversity. We test four conditions to understand the value of comparative genomics data to inform mechanism-based human and environmental hazard assessment: (1) genes that are most fundamental for health evolved early during animal evolution; (2) the molecular functions of pathways are better conserved among distantly related species than the individual genes that are members of these pathways; (3) the most conserved pathways among animals are those that cause adverse health outcomes when disrupted; (4) gene sets that serve as molecular signatures of biological processes or disease-states are largely enriched by evolutionarily conserved genes across the animal phylogeny. The concept of homology is applied in a comparative analysis of gene families and pathways among invertebrate and vertebrate species compared with humans. Results show that over 70% of gene families associated with disease are shared among the greatest variety of animal species through evolution. Pathway conservation between invertebrates and humans is based on the degree of conservation within vertebrates and the number of interacting genes within the human network. Human gene sets that already serve as biomarkers are enriched by evolutionarily conserved genes across the animal phylogeny. By implementing a comparative method for chemical hazard assessment, human and eco-toxicology converge towards a more holistic and mechanistic understanding of toxicity disrupting biological processes that are important for health and shared among animals (including humans).

10.
Sci Total Environ ; 853: 158770, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36108859

RESUMO

Inhaled particulate matter is associated with nasal diseases such as allergic rhinitis, rhinosinusitis and neural disorders. Its health risks on humans are usually evaluated by measurements on monkeys as they share close phylogenetic relationship. However, the reliability of cross-species toxicological extrapolation is in doubt due to physiological and anatomical variations, which greatly undermine the reliability of these expensive human surrogate models. This study numerically investigated in-depth microparticle transport and deposition characteristics on human and monkey (Macaca fuscata) nasal cavities that were reconstructed from CT-images. Deposition characteristics of 1-30µm particles were investigated under resting and active breathing conditions. Similar trends were observed for total deposition efficiencies and a single correlation using Stokes Number was fitted for both species and both breathing conditions, which is convenient for monkey-human extrapolation. Regional deposition patterns were carefully compared using the surface mapping technique. Deposition patterns of low, medium and high inertial particles, classified based on their total deposition efficiencies, were further analyzed in the 3D view and the mapped 2D view, which allows locating particle depositions on specific nasal regions. According to the particle intensity contours and regional deposition profiles, the major differences were observed at the vestibule and the floor of the nasal cavity, where higher deposition intensities of medium and high inertial particles were shown in the monkey case than the human case. Comparisons of airflow streamlines indicated that the cross-species variations of microparticle deposition patterns are mainly contributed by two factors. First, the more oblique directions of monkey nostrils result in a sharper airflow turn in the vestibule region. Second, the monkey's relatively narrower nasal valves lead to higher impaction of medium and high inertial particles on the nasal cavity floor. The methods and findings in this study would contribute to an improved cross-species toxicological extrapolation between human and monkey nasal cavities.


Assuntos
Cavidade Nasal , Material Particulado , Animais , Humanos , Cavidade Nasal/fisiologia , Tamanho da Partícula , Administração por Inalação , Haplorrinos , Filogenia , Reprodutibilidade dos Testes , Simulação por Computador
11.
Sci Total Environ ; 753: 141800, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207462

RESUMO

Ecosystems are usually populated by many species. Each of these species carries the potential to show a different sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described, ii) which predictors might be useful for explaining differences in species sensitivity, and iii) which statistical considerations are important. We argue that risk assessment can benefit most from modelling approaches when sensitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be paid to heterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences the reliability of the resulting models. Regarding which predictors are useful for explaining differences in species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapolation methods, describing the amount of mechanistic information the predictors contain, the amount of input data the models require, and the extent to which the different methods provide protection for ecological entities. We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the discussion of statistical considerations reveals that regardless of the method used, statistically significant models can be found, although the usefulness, applicability, and understanding of these models varies considerably. We therefore recommend publication of scientific code along with scientific studies to simultaneously clarify modelling choices and enable elaboration on existing work. In general, this review specifies the data requirements of different cross-species extrapolation methods, aiming to make regulators and publishers more aware that access to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, enabling their integration into the regulatory environment.

12.
Integr Environ Assess Manag ; 17(2): 352-363, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32910508

RESUMO

Earthworms are important ecosystem engineers, and assessment of the risk of plant protection products toward them is part of the European environmental risk assessment (ERA). In the current ERA scheme, exposure and effects are represented simplistically and are not well integrated, resulting in uncertainty when the results are applied to ecosystems. Modeling offers a powerful tool to integrate the effects observed in lower tier laboratory studies with the environmental conditions under which exposure is expected in the field. This paper provides a summary of the (In)Field Organism Risk modEling by coupling Soil Exposure and Effect (FORESEE) Workshop held 28-30 January 2020 in Düsseldorf, Germany. This workshop focused on toxicokinetic-toxicodynamic (TKTD) and population modeling of earthworms in the context of ERA. The goal was to bring together scientists from different stakeholder groups to discuss the current state of soil invertebrate modeling and to explore how earthworm modeling could be applied to risk assessments, in particular how the different model outputs can be used in the tiered ERA approach. In support of these goals, the workshop aimed at addressing the requirements and concerns of the different stakeholder groups to support further model development. The modeling approach included 4 submodules to cover the most relevant processes for earthworm risk assessment: environment, behavior (feeding, vertical movement), TKTD, and population. Four workgroups examined different aspects of the model with relevance for risk assessment, earthworm ecology, uptake routes, and cross-species extrapolation and model testing. Here, we present the perspectives of each workgroup and highlight how the collaborative effort of participants from multidisciplinary backgrounds helped to establish common ground. In addition, we provide a list of recommendations for how earthworm TKTD modeling could address some of the uncertainties in current risk assessments for plant protection products. Integr Environ Assess Manag 2021;17:352-363. © 2020 SETAC.


Assuntos
Oligoquetos , Praguicidas , Animais , Ecossistema , Alemanha , Humanos , Praguicidas/toxicidade , Medição de Risco , Solo
13.
Toxicol In Vitro ; 62: 104692, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669395

RESUMO

There is a growing recognition that application of mechanistic approaches to understand cross-species shared molecular targets and pathway conservation in the context of hazard characterization, provide significant opportunities in risk assessment (RA) for both human health and environmental safety. Specifically, it has been recognized that a more comprehensive and reliable understanding of similarities and differences in biological pathways across a variety of species will better enable cross-species extrapolation of potential adverse toxicological effects. Ultimately, this would also advance the generation and use of mechanistic data for both human health and environmental RA. A workshop brought together representatives from industry, academia and government to discuss how to improve the use of existing data, and to generate new NAMs data to derive better mechanistic understanding between humans and environmentally-relevant species, ultimately resulting in holistic chemical safety decisions. Thanks to a thorough dialogue among all participants, key challenges, current gaps and research needs were identified, and potential solutions proposed. This discussion highlighted the common objective to progress toward more predictive, mechanistically based, data-driven and animal-free chemical safety assessments. Overall, the participants recognized that there is no single approach which would provide all the answers for bridging the gap between mechanism-based human health and environmental RA, but acknowledged we now have the incentive, tools and data availability to address this concept, maximizing the potential for improvements in both human health and environmental RA.


Assuntos
Meio Ambiente , Saúde Ambiental , Toxicologia/tendências , Animais , Segurança Química , Humanos , Medição de Risco/métodos , Especificidade da Espécie
14.
Environ Sci Pollut Res Int ; 23(7): 6277-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26611632

RESUMO

In this study, the transfer of arsenic (As) from soil to corn grain was investigated in 18 soils collected from throughout China. The soils were treated with three concentrations of As and the transfer characteristics were investigated in the corn grain cultivar Zhengdan 958 in a greenhouse experiment. Through stepwise multiple-linear regression analysis, prediction models were developed combining the As bioconcentration factor (BCF) of Zhengdan 958 and soil pH, organic matter (OM) content, and cation exchange capacity (CEC). The possibility of applying the Zhengdan 958 model to other cultivars was tested through a cross-cultivar extrapolation approach. The results showed that the As concentration in corn grain was positively correlated with soil pH. When the prediction model was applied to non-model cultivars, the ratio ranges between the predicted and measured BCF values were within a twofold interval between predicted and measured values. The ratios were close to a 1:1 relationship between predicted and measured values. It was also found that the prediction model (Log [BCF]=0.064 pH-2.297) could effectively reduce the measured BCF variability for all non-model corn cultivars. The novel model is firstly developed for As concentration in crop grain from soil, which will be very useful for understanding the As risk in soil environment.


Assuntos
Arsênio/análise , Poluentes do Solo/análise , Zea mays/química , China , Grão Comestível/química , Modelos Lineares , Modelos Teóricos , Análise de Regressão , Solo/química
15.
Biomark Med ; 9(11): 1225-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26508561

RESUMO

Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.


Assuntos
Biomarcadores/metabolismo , Antagonistas GABAérgicos/efeitos adversos , Sistema Nervoso/efeitos dos fármacos , Receptores de GABA/metabolismo , Animais , Humanos , Sistema Nervoso/metabolismo
16.
J Pharm Sci ; 104(1): 191-206, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25393841

RESUMO

Transfer of knowledge along the different phases of drug development is a fundamental process in pharmaceutical research. In particular, cross-species extrapolation between different laboratory animals and further on to first-in-human trials is challenging because of the uncertain comparability of physiological processes. Physiologically based pharmacokinetic (PBPK) modeling allows translation of mechanistic knowledge from one species to another by specifically considering physiological and biochemical differences in between. We here evaluated different knowledge-driven approaches for cross-species extrapolation by systematically incorporating specific model parameter domains of a target species into the PBPK model of a reference species. Altogether, 15 knowledge-driven approaches were applied to murine and human PBPK models of 10 exemplary drugs resulting in 300 different extrapolations. Statistical analysis of the quality of the different extrapolations revealed not only species-specific physiology as the key determinant in cross-species extrapolation but also identified a synergistic effect when considering both kinetic rate constants and gene expression profiles of relevant enzymes and transporters. Moreover, we show that considering species-specific physiology, plasma protein binding, enzyme and transport kinetics, as well as tissue-specific gene expression profiles in PBPK modeling increases accuracy of cross-species extrapolations and thus supports first-in-human trials based on prior preclinical knowledge.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/farmacocinética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Modelos Biológicos , Farmacologia Clínica/métodos , Fisiologia Comparada/métodos , Animais , Células Cultivadas , Biologia Computacional , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drogas em Investigação/metabolismo , Drogas em Investigação/farmacologia , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Alemanha , Humanos , Fígado/citologia , Fígado/enzimologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Especificidade da Espécie , Organismos Livres de Patógenos Específicos
17.
Chemosphere ; 120: 764-77, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25439131

RESUMO

To elucidate the effects of chemicals on populations of different species in the environment, efficient testing and modeling approaches are needed that consider multiple stressors and allow reliable extrapolation of responses across species. An adverse outcome pathway (AOP) is a concept that provides a framework for organizing knowledge about the progression of toxicity events across scales of biological organization that lead to adverse outcomes relevant for risk assessment. In this paper, we focus on exploring how the AOP concept can be used to guide research aimed at improving both our understanding of chronic toxicity, including delayed toxicity as well as epigenetic and transgenerational effects of chemicals, and our ability to predict adverse outcomes. A better understanding of the influence of subtle toxicity on individual and population fitness would support a broader integration of sublethal endpoints into risk assessment frameworks. Detailed mechanistic knowledge would facilitate the development of alternative testing methods as well as help prioritize higher tier toxicity testing. We argue that targeted development of AOPs supports both of these aspects by promoting the elucidation of molecular mechanisms and their contribution to relevant toxicity outcomes across biological scales. We further discuss information requirements and challenges in application of AOPs for chemical- and site-specific risk assessment and for extrapolation across species. We provide recommendations for potential extension of the AOP framework to incorporate information on exposure, toxicokinetics and situation-specific ecological contexts, and discuss common interfaces that can be employed to couple AOPs with computational modeling approaches and with evolutionary life history theory. The extended AOP framework can serve as a venue for integration of knowledge derived from various sources, including empirical data as well as molecular, quantitative and evolutionary-based models describing species responses to toxicants. This will allow a more efficient application of AOP knowledge for quantitative chemical- and site-specific risk assessment as well as for extrapolation across species in the future.


Assuntos
Ecotoxicologia/métodos , Meio Ambiente , Poluentes Ambientais/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Pesquisa/tendências , Medição de Risco/métodos , Testes de Toxicidade Crônica/métodos , Animais , Ecotoxicologia/tendências , Humanos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA