RESUMO
Composite materials containing zero valent copper (ZVC) dispersed in the matrix of two commercially available strongly basic anion exchangers with a macroreticular (Amberlite IRA 900Cl) and gel-like (Amberlite IRA 402OH) structure were obtained. Cu0 particles appeared in the resin phase as the product of the reduction of the precursor, i.e., copper oxide(I) particles previously deposited in the two supporting materials. As a result of a one-step transformation of preformed Cu2O particles as templates conducted using green reductant ascorbic acid and under mild conditions, macroporous and gel-type hybrid products containing ZVC were obtained with a total copper content of 7.7 and 5.3 wt%, respectively. X-ray diffraction and FTIR spectroscopy confirmed the successful transformation of the starting oxide particles into a metallic deposit. A scanning electron microscopy study showed that the morphology of the deposit is mainly influenced by the type of matrix exchanger. In turn, the drying steps were crucial to its porosity and mechanical resistance. Because both the shape and size of copper particles and the internal structure of the supporting solid materials can have a decisive impact on the potential applications of the obtained materials, the results presented here reveal a great possibility for the design and synthesis of functional nanocrystalline solids.
RESUMO
Copper oxides have been of considerable interest as electrocatalysts for CO2 reduction (CO2R) in aqueous electrolytes. However, their role as an active catalyst in reducing the required overpotential and improving the selectivity of reaction compared with that of polycrystalline copper remains controversial. Here, we introduce the use of selected-ion flow tube mass spectrometry, in concert with chronopotentiometry, in situ Raman spectroscopy, and computational modeling, to investigate CO2R on Cu2O nanoneedles, Cu2O nanocrystals, and Cu2O nanoparticles. We show experimentally that the selective formation of gaseous C2 products (i.e., ethylene) in CO2R is preceded by the reduction of the copper oxide (Cu2OR) surface to metallic copper. On the basis of density functional theory modeling, CO2R products are not formed as long as Cu2O is present at the surface because Cu2OR is kinetically and energetically more favorable than CO2R.