Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2213727120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656854

RESUMO

The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.


Assuntos
Myoviridae , Montagem de Vírus , Bacteriófago T4/química , Capsídeo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Myoviridae/química
2.
Environ Res ; 229: 115728, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966999

RESUMO

Cyanobacteria are a type of bloom-forming phytoplankton that cause environmental problems in aquatic ecosystems worldwide. Cyanobacterial harmful algal blooms (cyanoHAB) often produce cyanotoxins that affect public health by contaminating surface waters and drinking water reservoirs. Conventional drinking water treatment plants are ineffective in treating cyanotoxins, even though some treatment methods are available. Therefore, innovative and advanced treatment methods are required to control cyanoHABs and their cyanotoxins. The goal of this review paper is to provide insight into the use of cyanophages as an effective form of biological control method for the removal of cyanoHABs in aquatic systems. Moreover, the review contains information on cyanobacterial blooms, cyanophage-cyanobacteria interactions, including infection mechanisms, as well as examples of different types of cyanobacteria and cyanophages. Moreover, the real-life application of cyanophages in marine and freshwater environments and the mode of action of cyanophages were compiled.


Assuntos
Cianobactérias , Água Potável , Ecossistema , Toxinas de Cianobactérias , Fitoplâncton , Proliferação Nociva de Algas
3.
Environ Res ; 223: 115428, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746205

RESUMO

The over proliferation of harmful cyanobacteria and their cyanotoxins resulted in damaged aquatic ecosystem, polluted drinking water and threatened human health. Cyanophages are a kind of viruses that exclusively infect cyanobacteria, which is considered as a potential strategy to deal with cyanobacterial blooms. Nevertheless, the infecting host range and/or lysis efficiency of natural cyanophages is limited, rising the necessity of constructing non-natural cyanophages via artificial modification, design and synthesis to expand their host range and/or efficiency. The paper firstly reviewed representative cyanophages such as P60 with a short latent period of 1.5 h and S-CBS1 having a burst size up to 200 PFU/cell. To explore the in-silico design principles, we critically summarized the interactions between cyanophages and the hosts, indicating modifying the recognized receptors, enhancing the adsorption ability, changing the lysogeny and excluding the defense of hosts are important for artificial cyanophages. The research progress of synthesizing artificial cyanophages were summarized subsequently, raising the importance of developing genetic manipulation technologies and their rescue strategies in the future. Meanwhile, Large-scale preparation of cyanophages for bloom control is a big challenge. The application prospects of artificial cyanophages besides cyanobacteria bloom control like adaptive evolution and phage therapy were discussed at last. The review will promote the design, synthesis and application of cyanophages for cyanobacteria blooms, which may provide new insights for the related water pollution control and ensuring hydrosphere security.


Assuntos
Bacteriófagos , Cianobactérias , Humanos , Bacteriófagos/genética , Ecossistema
4.
J Virol ; 95(24): e0135621, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34549983

RESUMO

A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a noncovalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo 3-fold axis combined with the complementarity in shape and electrostatic potential around the 2-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O2 generation, and CO2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.


Assuntos
Anabaena/virologia , Bacteriófagos/química , Capsídeo/química , Microscopia Crioeletrônica/métodos , Bacteriófagos/classificação , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Água Doce/microbiologia , Modelos Moleculares , Filogenia
5.
Microb Ecol ; 83(2): 284-295, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34091717

RESUMO

Studies of the diversity and distribution of freshwater cyanophages are generally limited to the small geographical areas, in many cases including only one or few lakes. Data from dozens of various lakes distributed at a larger distance are necessary to understand their spatial distribution and sensitivity to biotic and abiotic factors. Thus, the objective of this study was to analyze the diversity and distribution of cyanophages within the infected cells using marker genes (psbA, nblA, and g91) in 21 Polish and Lithuanian lakes. Physicochemical factors that might be related to them were also analyzed. The results demonstrated that genetic markers representing cyanophages were observed in most lakes studied. The frequently detected gene was psbA with 88% of cyanophage-positive samples, while nblA and g91 were found in approximately 50% of lakes. The DNA sequence analyses for each gene demonstrated low variability between them, although the psbA sequences branched within the larger cluster of marine Synechoccocuss counterparts. The principal component analysis allowed to identify significant variation between the lakes that presented high and low cyanobacterial biomass. The lakes with high cyanobacterial biomass were further separated by country and the different diversity of cyanobacteria species, particularly Planktothrix agardhii, was dominant in the Polish lakes and Planktolyngbya limnetica in the Lithuanian lakes. The total phosphorous and the presence of cyanophage genes psbA and nblA were the most important factors that allowed differentiation for the Polish lakes, while the pH and the genes g91 and nblA for the Lithuanian lakes.


Assuntos
Bacteriófagos , Lagos , Bacteriófagos/genética , Marcadores Genéticos , Filogenia , Reação em Cadeia da Polimerase
6.
Proc Natl Acad Sci U S A ; 116(28): 14077-14082, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235591

RESUMO

As an adaptation to the daily light-dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light-dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light-dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.


Assuntos
Bacteriófagos/genética , Ritmo Circadiano/genética , Viroses/genética , Replicação Viral/genética , Bacteriófagos/patogenicidade , Bacteriófagos/fisiologia , Ritmo Circadiano/fisiologia , Regulação Viral da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Luz , Fotoperíodo , Fotossíntese/genética , Prochlorococcus/genética , Prochlorococcus/virologia , Synechococcus/genética , Synechococcus/virologia
7.
J Biol Chem ; 295(31): 10610-10623, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32434930

RESUMO

Marine cyanobacteria are infected by phages whose genomes encode ferredoxin (Fd) electron carriers. These Fds are thought to redirect the energy harvested from light to phage-encoded oxidoreductases that enhance viral fitness, but it is unclear how the biophysical properties and partner specificities of phage Fds relate to those of photosynthetic organisms. Here, results of a bioinformatics analysis using a sequence similarity network revealed that phage Fds are most closely related to cyanobacterial Fds that transfer electrons from photosystems to oxidoreductases involved in nutrient assimilation. Structural analysis of myovirus P-SSM2 Fd (pssm2-Fd), which infects the cyanobacterium Prochlorococcus marinus, revealed high levels of similarity to cyanobacterial Fds (root mean square deviations of ≤0.5 Å). Additionally, pssm2-Fd exhibited a low midpoint reduction potential (-336 mV versus a standard hydrogen electrode), similar to other photosynthetic Fds, although it had lower thermostability (Tm = 28 °C) than did many other Fds. When expressed in an Escherichia coli strain deficient in sulfite assimilation, pssm2-Fd complemented bacterial growth when coexpressed with a P. marinus sulfite reductase, revealing that pssm2-Fd can transfer electrons to a host protein involved in nutrient assimilation. The high levels of structural similarity with cyanobacterial Fds and reactivity with a host sulfite reductase suggest that phage Fds evolved to transfer electrons to cyanobacterially encoded oxidoreductases.


Assuntos
Proteínas de Bactérias , Bacteriófagos/enzimologia , Ferredoxinas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Prochlorococcus , Proteínas Virais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Prochlorococcus/enzimologia , Prochlorococcus/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Proteins ; 88(9): 1226-1232, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32337767

RESUMO

Cyanophages, widespread in aquatic systems, are a class of viruses that specifically infect cyanobacteria. Though they play important roles in modulating the homeostasis of cyanobacterial populations, little is known about the freshwater cyanophages, especially those hypothetical proteins of unknown function. Mic1 is a freshwater siphocyanophage isolated from the Lake Chaohu. It encodes three hypothetical proteins Gp65, Gp66, and Gp72, which share an identity of 61.6% to 83%. However, we find these three homologous proteins differ from each other in oligomeric state. Moreover, we solve the crystal structure of Gp72 at 2.3 Å, which represents a novel fold in the α + ß class. Structural analyses combined with redox assays enable us to propose a model of disulfide bond mediated oligomerization for Gp72. Altogether, these findings provide structural and biochemical basis for further investigations on the freshwater cyanophage Mic1.


Assuntos
Bacteriófagos/química , Cianobactérias/virologia , Dissulfetos/química , Proteínas Virais/química , Sequência de Aminoácidos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Água Doce/microbiologia , Água Doce/virologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859600

RESUMO

Western Lake Erie (Laurentian Great Lakes) is prone to annual cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis spp. that often yield microcystin toxin concentrations exceeding the federal EPA recreational contact advisory of 8 µg liter-1 In August 2014, microcystin levels were detected in finished drinking water above the World Health Organization 1.0 µg liter-1 threshold for consumption, leading to a 2-day disruption in the supply of drinking water for >400,000 residents of Toledo, Ohio (USA). Subsequent metatranscriptomic analysis of the 2014 bloom event provided evidence that release of toxin into the water supply was likely caused by cyanophage lysis that transformed a portion of the intracellular microcystin pool into the dissolved fraction, rendering it more difficult to eliminate during treatment. In August 2019, a similar increase in dissolved microcystins at the Toledo water intake was coincident with a viral lytic event caused by a phage consortium different in composition from what was detected following the 2014 Toledo water crisis. The most abundant viral sequence in metagenomic data sets was a scaffold from a putative member of the Siphoviridae, distinct from the Ma-LMM01-like Myoviridae that are typically documented to occur in western Lake Erie. This study provides further evidence that viral activity in western Lake Erie plays a significant role in transformation of microcystins from the particulate to the dissolved fraction and therefore requires monitoring efforts from local water treatment plants. Additionally, identification of multiple lytic cyanophages will enable the development of a quantitative PCR toolbox to assess viral activity during cHABs.IMPORTANCE Viral attack on cHABs may contribute to changes in community composition during blooms, as well as bloom decline, yet loss of bloom biomass does not eliminate the threat of cHAB toxicity. Rather, it may increase risks to the public by delivering a pool of dissolved toxin directly into water treatment utilities when the dominating Microcystis spp. are capable of producing microcystins. Detecting, characterizing, and quantifying the major cyanophages involved in lytic events will assist water treatment plant operators in making rapid decisions regarding the pool of microcystins entering the plant and the corresponding best practices to neutralize the toxin.


Assuntos
Eutrofização , Lagos/microbiologia , Microcistinas/metabolismo , Siphoviridae/fisiologia , Lagos/virologia , Ohio , Siphoviridae/classificação , Siphoviridae/isolamento & purificação
10.
Virol J ; 16(1): 15, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709355

RESUMO

Microbial communities living in the oceans are major drivers of global biogeochemical cycles. With nutrients limited across vast swathes of the ocean, marine microbes eke out a living under constant assault from predatory viruses. Viral concentrations exceed those of their bacterial prey by an order of magnitude in surface water, making these obligate parasites the most abundant biological entities in the ocean. Like the pirates of the 17th and 18th centuries that hounded ships plying major trade and exploration routes, viruses have evolved mechanisms to hijack microbial cells and repurpose their cargo and indeed the vessels themselves to maximise viral propagation. Phenotypic reconfiguration of the host is often achieved through Auxiliary Metabolic Genes - genes originally derived from host genomes but maintained and adapted in viral genomes to redirect energy and substrates towards viral synthesis. In this review, we critically evaluate the literature describing the mechanisms used by bacteriophages to reconfigure host metabolism and to plunder intracellular resources to optimise viral production. We also highlight the mechanisms used when, in challenging environments, a 'batten down the hatches' strategy supersedes that of 'plunder and pillage'. Here, the infecting virus increases host fitness through phenotypic augmentation in order to ride out the metaphorical storm, with a concomitant impact on host substrate uptake and metabolism, and ultimately, their interactions with their wider microbial community. Thus, the traditional view of the virus-host relationship as predator and prey does not fully characterise the variety or significance of the interactions observed. Recent advances in viral metagenomics have provided a tantalising glimpse of novel mechanisms of viral metabolic reprogramming in global oceans. Incorporation of these new findings into global biogeochemical models requires experimental evidence from model systems and major improvements in our ability to accurately predict protein function from sequence data.


Assuntos
Bacteriófagos/genética , Interações entre Hospedeiro e Microrganismos , Água do Mar/virologia , Bactérias/virologia , Bacteriófagos/fisiologia , DNA Viral/genética , Genes Virais , Genoma Viral , Lisogenia , Metagenômica , Oceanos e Mares , Filogenia , Água do Mar/microbiologia
11.
Proc Natl Acad Sci U S A ; 112(17): E2191-200, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25922520

RESUMO

Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.


Assuntos
Bacteriófagos , Evolução Molecular , Genes Bacterianos , Mutação , Prochlorococcus/genética , Prochlorococcus/virologia
12.
BMC Genomics ; 17(1): 930, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852226

RESUMO

BACKGROUND: Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. RESULTS: Here we explore the role of recombination in both maintaining and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. CONCLUSIONS: These findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes.


Assuntos
Bacteriófagos/genética , Transferência Genética Horizontal/genética , Genoma Viral , Bacteriófagos/classificação , Evolução Biológica , Hibridização Genômica Comparativa , DNA/metabolismo , DNA Viral/química , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Ligação Genética , Especificidade de Hospedeiro , Metagenômica , Filogenia , Análise de Sequência de DNA
13.
Microb Ecol ; 71(2): 315-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26403721

RESUMO

An increased incidence of cyanobacterial blooms, which are largely composed of toxigenic cyanobacteria from the Microcystis genus, leads to a disruption of aquatic ecosystems worldwide. Therefore, a better understanding of the impact of environmental parameters on the development and collapse of blooms is important. The objectives of the present study were as follows: (1) to investigate the presence and identity of Microcystis-specific cyanophages capable of cyanobacterial cell lysis in a lowland dam reservoir in Central Europe; (2) to investigate Microcystis sensitivity to phage infections with regard to toxic genotypes; and (3) to identify key abiotic parameters influencing phage infections during the summer seasons between 2009 and 2013. Sequencing analysis of selected g91 gene amplification products confirmed that the identified cyanophages belonged to the family Myoviridae (95 % homology). Cyanophages and Microcystis hosts, including toxic genotypes, were positively correlated in 4 of the 5 years analyzed (r = 0.67-0.82). The average percentage of infected Microcystis cells varied between 0.1 and 32 %, and no particular sensitivity of the phages to toxigenic genotypes was recorded. The highest number of cyanophages (>10(4) gene copy number per microliter) was observed in the period preceded by the following: an increase of the water retention time, growth of the water temperature, optimum nutrient concentrations, and the predomination of Microcystis bloom.


Assuntos
Bacteriófagos/isolamento & purificação , Água Doce/microbiologia , Microcystis/crescimento & desenvolvimento , Microcystis/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Sequência de Bases , Ecossistema , Eutrofização , Água Doce/química , Microcystis/genética , Dados de Sequência Molecular , Polônia , Estações do Ano , Proteínas Virais/química , Proteínas Virais/genética , Recursos Hídricos
14.
Photosynth Res ; 126(1): 71-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25381655

RESUMO

Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.


Assuntos
Bacteriófagos/fisiologia , Genes Virais , Fotossíntese , Prochlorococcus/virologia , Synechococcus/virologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Genoma Viral , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Dados de Sequência Molecular , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Pigmentos Biológicos/biossíntese , Plastocianina/química , Plastocianina/genética , Plastocianina/metabolismo
15.
Lett Appl Microbiol ; 60(4): 400-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25580646

RESUMO

UNLABELLED: Microcystis aeruginosa forms toxic cyanobacterial blooms throughout the world where its infectious phages are thought to influence host population dynamics. To assess the cyanophage impact on the host dynamics, we previously monitored Ma-LMM01-type phage abundance using a real-time PCR with a primer set designed based on the sequence of Microcystis phage Ma-LMM01; and we estimated the phage-infected host cell abundance. However, a recent study shows the Ma-LMM01 g91 gene sequence belongs to the smallest group, group III, of the three genotype groups, suggesting Ma-LMM01-type phage abundance was underestimated. Therefore, to re-evaluate the effect of Ma-LMM01-type phages on their hosts, we monitored the abundance of Ma-LMM01-type phages using real-time PCR with a new primer set designed based on the sequences of genotype groups I-III. We found phage abundance between 10(3) and 10(4) ml(-1) using the new primer set in samples where previously these phages were not detected using the old primer set. The frequency of Ma-LMM01-type phage-infected cells to Ma-LMM01-type phage-susceptible host cells may be as high as 30%, suggesting the phages may occasionally affect not only shifts in the genetic composition but also the dynamics of Ma-LMM01-type phage-susceptible host populations. SIGNIFICANCE AND IMPACT OF THE STUDY: Phages are one of the factors that may control the ecology of their host blooms. Therefore, it is essential to estimate phage abundance to understand phage impact on host populations. A real-time PCR assay was improved to detect a larger range of Microcystis cyanophages in natural surroundings where no phages were detected using a previous method by re-designing a new primer set based on sequences from three Ma-LMM01-type phage genetic groups. The new method allows us to determine the distribution, dynamics and infection cycle of the phage to help understand the interaction between the phages and the hosts.


Assuntos
Bacteriófagos/genética , Microcystis/virologia , Lagoas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequência de Bases , Genótipo , Microcystis/crescimento & desenvolvimento , Dados de Sequência Molecular
16.
Front Microbiol ; 15: 1390726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881659

RESUMO

Freshwater availability is essential, and its maintenance has become an enormous challenge. Due to population growth and climate changes, freshwater sources are becoming scarce, imposing the need for strategies for its reuse. Currently, the constant discharge of waste into water bodies from human activities leads to the dissemination of pathogenic bacteria, negatively impacting water quality from the source to the infrastructure required for treatment, such as the accumulation of biofilms. Current water treatment methods cannot keep pace with bacterial evolution, which increasingly exhibits a profile of multidrug resistance to antibiotics. Furthermore, using more powerful disinfectants may affect the balance of aquatic ecosystems. Therefore, there is a need to explore sustainable ways to control the spreading of pathogenic bacteria. Bacteriophages can infect bacteria and archaea, hijacking their host machinery to favor their replication. They are widely abundant globally and provide a biological alternative to bacterial treatment with antibiotics. In contrast to common disinfectants and antibiotics, bacteriophages are highly specific, minimizing adverse effects on aquatic microbial communities and offering a lower cost-benefit ratio in production compared to antibiotics. However, due to the difficulty involving cultivating and identifying environmental bacteriophages, alternative approaches using NGS metagenomics in combination with some bioinformatic tools can help identify new bacteriophages that can be useful as an alternative treatment against resistant bacteria. In this review, we discuss advances in exploring the virome of freshwater, as well as current applications of bacteriophages in freshwater treatment, along with current challenges and future perspectives.

17.
Microorganisms ; 12(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39203420

RESUMO

Cyanobacterial harmful algal blooms (CyanoHABs) cause health and environmental effects worldwide. Cyanophage is a virus that exclusively infects cyanobacteria. Using cyanophages to control blooms is the latest biological control method. However, little research on the genomics of cyanophages and the presence of numerous proteins with unidentified functions in cyanophage genomes pose challenges for their practical application and comprehensive investigation. We selected the broad-spectrum and efficient cyanophage YongM for our study. On the one hand, through rational analysis, we analyze essential genes, establish the minimal cyanophage genome and single essential gene modules, and examine the impact of essential modules on growth. Additionally, we conducted ultraviolet mutagenesis on YongM to generate more efficient cyanophages' critical modules through random mutagenesis. Then, we sequenced and analyzed the functionality of the mutational gene modules. These findings highlight several gene modules that contribute to a deeper understanding of the functional components within cyanophage genomes.

18.
Sci Total Environ ; 950: 175201, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39102952

RESUMO

The disparities in harmful algal blooms dynamics are largely attributed to variations in cyanobacteria populations within aquatic ecosystems. However, cyanobacteria-cyanophage interactions and their role in shaping cyanobacterial populations has been previously underappreciated. To address this knowledge gap, we isolated and sequenced 42 cyanophages from diverse water sources in China, with the majority (n = 35) originating from freshwater sources. We designated these sequences as the "Novel Cyanophage Genome sequence Collection" (NCGC). NCGC displayed notable genetic variations, with 95 % (40/42) of the sequences representing previously unidentified taxonomic ranks. By integrating NCGC with public data of cyanophages and cyanobacteria, we found evidence for more frequent historical cyanobacteria-cyanophage interactions in freshwater ecosystems. This was evidenced by a higher prevalence of prophage integrase-related genes in freshwater cyanophages (37.97 %) than marine cyanophages (7.42 %). In addition, freshwater cyanophages could infect a broader range of cyanobacteria orders (n = 4) than marine ones (n = 0). Correspondingly, freshwater cyanobacteria harbored more defense systems per million base pairs in their genomes, indicating more frequent phage infections. Evolutionary and cyanophage epidemiological studies suggest that interactions between cyanobacteria and cyanophages in freshwater and marine ecosystems are interconnected, and that brackish water can act as a transitional zone for freshwater and marine cyanophages. In conclusion, our research significantly expands the genetic information database of cyanophage, offering a wider selection of cyanophages to control harmful cyanobacterial blooms. Additionally, we represent a pioneering large-scale and comprehensive analysis of cyanobacteria and cyanophage sequencing data, and it provides theoretical guidance for the application of cyanophages in different environments.


Assuntos
Bacteriófagos , Cianobactérias , Ecossistema , Água Doce , Água do Mar , Cianobactérias/virologia , Cianobactérias/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Água Doce/virologia , China , Água do Mar/virologia , Água do Mar/microbiologia , Genoma Viral , Genômica , Proliferação Nociva de Algas
19.
Microbiol Spectr ; 12(2): e0200223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193726

RESUMO

Marine ecosystems contain an immense diversity of phages, many of which infect cyanobacteria (cyanophage) that are largely responsible for primary productivity. To characterize the genetic diversity and biogeographic distribution of the marine T4-like cyanophage community in the northern South China Sea, the T4-like cyanophage portal protein gene (g20) was amplified. Phylogenetic analysis revealed that marine T4-like cyanophages were highly diverse, with g20 operational taxonomic units being affiliated with five defined clades (Clusters I-V). Cluster II had a wide geographic distribution, Cluster IV was the most abundant in the open sea, and Cluster I was dominant in coastal shelf environments. Our results showed T4-like cyanophages (based on g20) community was generally shaped via heterogeneous selection. Highly variable environmental factors (such as salinity and temperature) can heterogeneously select different cyanophage communities. Nevertheless, the dominant drivers of the T4-like cyanophage community based on the g20 and g23 (T4-like phage major capsid protein gene) were different, probably due to different coverages by the primer sets. Furthermore, the community assembly processes of T4-like cyanophages were affected by host traits (abundance and distribution), viral traits (latent period, burst size, and host range), and environmental properties (temperature and salinity).IMPORTANCECyanophages are abundant and ubiquitous in the oceans, altering population structures and evolution of cyanobacteria, which account for a large portion of global carbon fixation, through host mortality, horizontal gene transfer, and the modulation of host metabolism. However, little is known about the biogeography and ecological drivers that shape the cyanophage community. Here, we use g20 and g23 genes to examine the biogeographic patterns and the assembly mechanisms of T4-like cyanophage community in the northern part of the South China Sea. The different coverages of primer sets might lead to the different dominant drivers of T4-like cyanophage community based on g20 and g23 genes. Our results showed that characteristics of viral traits (latent period, burst size, and host range) and host traits (abundance and distribution) were found to either limit or enhance the biogeographic distribution of T4-like cyanophages. Overall, both virus and host properties are critical to consider when determining rules of community assembly for viruses.


Assuntos
Bacteriófagos , Cianobactérias , Filogenia , Ecossistema , Bacteriófagos/genética , Proteínas do Capsídeo/genética , Capsídeo
20.
Front Microbiol ; 15: 1345952, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343717

RESUMO

Viruses are infectious and abundant in the marine environment. Viral lysis of host cells releases organic matter and nutrients that affect the surrounding microbial community. Synechococcus are important primary producers in the ocean and they are subject to frequent viral infection. In the laboratory, Synechococcus cultures are often associated with bacteria and such a co-existence relationship appears to be important to the growth and stability of Synechococcus. However, we know little about how viral lysis of Synechococcus affects the co-existing bacteria in the culture. This study investigated the influence of viral infection of Synechococcus on co-occurring bacterial community in the culture. We analyzed the community composition, diversity, predicted functions of the bacterial community, and its correlations with fluorescent dissolved organic matter (FDOM) components and nutrients after introducing a cyanophage to the Synechococcus culture. Cyanophage infection altered the bacterial community structure and increased the bacterial diversity and richness. Increased bacterial groups such as Bacteroidetes and Alphaproteobacteria and decreased bacterial groups such as Gammaproteobacteria were observed. Moreover, cyanophage infection reduced bacterial interactions but enhanced correlations between the dominant bacterial taxa and nutrients. Unique FDOM components were observed in the cyanophage-added culture. Fluorescence intensities of FDOM components varied across the cyanophage-infection process. Decreased nitrate and increased ammonium and phosphate in the cyanophage-added culture coupled with the viral progeny production and increased substance transport and metabolism potentials of the bacterial community. Furthermore, increased potentials in methane metabolism and aromatic compound degradation of the bacterial community were observed in the cyanophage-added culture, suggesting that cyanophage infections contribute to the production of methane-related compounds and refractory organic matter in a microcosm like environment. This study has the potential to deepen our understanding of the impact of viral lysis of cyanobacteria on microbial community in the surrounding water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA