Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(6): 1000-1014.e15, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283057

RESUMO

Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and an unrecognized higher-order property of super-enhancers in RNA processing beyond transcription.


Assuntos
Elementos Facilitadores Genéticos , MicroRNAs/metabolismo , Animais , Azepinas/farmacologia , Regulação da Expressão Gênica , Código das Histonas , Humanos , Camundongos , Neoplasias/genética , Especificidade de Órgãos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Triazóis/farmacologia
2.
Mol Cell ; 84(14): 2665-2681.e13, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38955180

RESUMO

During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.


Assuntos
Implantação do Embrião , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Ativação Transcricional , Animais , Implantação do Embrião/genética , Camundongos , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fosforilação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Feminino , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Transdução de Sinais
3.
Mol Cell ; 83(11): 1810-1826.e8, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267903

RESUMO

Microprocessor (MP), DROSHA-DGCR8, processes primary miRNA transcripts (pri-miRNAs) to initiate miRNA biogenesis. The canonical cleavage mechanism of MP has been extensively investigated and comprehensively validated for two decades. However, this canonical mechanism cannot account for the processing of certain pri-miRNAs in animals. In this study, by conducting high-throughput pri-miRNA cleavage assays for approximately 260,000 pri-miRNA sequences, we discovered and comprehensively characterized a noncanonical cleavage mechanism of MP. This noncanonical mechanism does not need several RNA and protein elements essential for the canonical mechanism; instead, it utilizes previously unrecognized DROSHA dsRNA recognition sites (DRESs). Interestingly, the noncanonical mechanism is conserved across animals and plays a particularly significant role in C. elegans. Our established noncanonical mechanism elucidates MP cleavage in numerous RNA substrates unaccounted for by the canonical mechanism in animals. This study suggests a broader substrate repertoire of animal MPs and an expanded regulatory landscape for miRNA biogenesis.


Assuntos
MicroRNAs , Animais , MicroRNAs/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , RNA de Cadeia Dupla , Processamento Pós-Transcricional do RNA
4.
Mol Cell ; 81(16): 3422-3439.e11, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34320405

RESUMO

Maturation of canonical microRNA (miRNA) is initiated by DROSHA that cleaves the primary transcript (pri-miRNA). More than 1,800 miRNA loci are annotated in humans, but it remains largely unknown whether and at which sites pri-miRNAs are cleaved by DROSHA. Here, we performed in vitro processing on a full set of human pri-miRNAs (miRBase version 21) followed by sequencing. This comprehensive profiling enabled us to classify miRNAs on the basis of DROSHA dependence and map their cleavage sites with respective processing efficiency measures. Only 758 pri-miRNAs are confidently processed by DROSHA, while the majority may be non-canonical or false entries. Analyses of the DROSHA-dependent pri-miRNAs show key cis-elements for processing. We observe widespread alternative processing and unproductive cleavage events such as "nick" or "inverse" processing. SRSF3 is a broad-acting auxiliary factor modulating alternative processing and suppressing unproductive processing. The profiling data and methods developed in this study will allow systematic analyses of miRNA regulation.


Assuntos
MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética , Ribonuclease III/genética , Fatores de Processamento de Serina-Arginina/genética , Sítios de Ligação/genética , Genoma Humano/genética , Células HEK293 , Humanos , Interferência de RNA
5.
Mol Cell ; 78(2): 303-316.e4, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302542

RESUMO

Nuclear processing of most miRNAs is mediated by Microprocessor, comprised of RNase III enzyme Drosha and its cofactor DGCR8. Here, we uncover a hidden layer of Microprocessor regulation via studies of Dicer-independent mir-451, which is clustered with canonical mir-144. Although mir-451 is fully dependent on Drosha/DGCR8, its short stem and small terminal loop render it an intrinsically weak Microprocessor substrate. Thus, it must reside within a cluster for normal biogenesis, although the identity and orientation of its neighbor are flexible. We use DGCR8 tethering assays and operon structure-function assays to demonstrate that local recruitment and transfer of Microprocessor enhances suboptimal substrate processing. This principle applies more broadly since genomic analysis indicates suboptimal canonical miRNAs are enriched in operons, and we validate several of these experimentally. Proximity-based enhancement of suboptimal hairpin processing provides a rationale for genomic retention of certain miRNA operons and may explain preferential evolutionary emergence of miRNA operons.


Assuntos
Genômica , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Núcleo Celular/genética , Humanos , Processamento Pós-Transcricional do RNA/genética
6.
Mol Cell ; 78(3): 423-433.e5, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220645

RESUMO

A commencing and critical step in miRNA biogenesis involves processing of pri-miRNAs in the nucleus by Microprocessor. An important, but not completely understood, question is how Drosha, the catalytic subunit of Microprocessor, binds pri-miRNAs and correctly specifies cleavage sites. Here we report the cryoelectron microscopy structures of the Drosha-DGCR8 complex with and without a pri-miRNA. The RNA-bound structure provides direct visualization of the tertiary structure of pri-miRNA and shows that a helix hairpin in the extended PAZ domain and the mobile basic (MB) helix in the RNase IIIa domain of Drosha coordinate to recognize the single-stranded to double-stranded junction of RNA, whereas the dsRNA binding domain makes extensive contacts with the RNA stem. Furthermore, the RNA-free structure reveals an autoinhibitory conformation of the PAZ helix hairpin. These findings provide mechanistic insights into pri-miRNA cleavage site selection and conformational dynamics governing pri-miRNA recognition by the catalytic component of Microprocessor.


Assuntos
MicroRNAs/química , MicroRNAs/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Spodoptera/citologia
7.
Mol Cell ; 78(2): 289-302.e6, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302541

RESUMO

Microprocessor initiates the processing of microRNAs (miRNAs) from the hairpin regions of primary transcripts (pri-miRNAs). Pri-miRNAs often contain multiple miRNA hairpins, and this clustered arrangement can assist in the processing of otherwise defective hairpins. We find that miR-451, which derives from a hairpin with a suboptimal terminal loop and a suboptimal stem length, accumulates to 40-fold higher levels when clustered with a helper hairpin. This phenomenon tolerates changes in hairpin order, linker lengths, and the identities of the helper hairpin, the recipient hairpin, the linker-sequence, and the RNA polymerase that transcribes the hairpins. It can act reciprocally and need not occur co-transcriptionally. It requires Microprocessor recognition of the helper hairpin and linkage of the two hairpins, yet predominantly manifests after helper-hairpin processing. It also requires enhancer of rudimentary homolog (ERH), which copurifies with Microprocessor and can dimerize and interact with other proteins that can dimerize, suggesting a model in which one Microprocessor recruits another Microprocessor.


Assuntos
Proteínas de Ciclo Celular/genética , MicroRNAs/genética , RNA Polimerase III/genética , Fatores de Transcrição/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica
8.
Mol Cell ; 78(3): 411-422.e4, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220646

RESUMO

Metazoan microRNAs require specific maturation steps initiated by Microprocessor, comprising Drosha and DGCR8. Lack of structural information for the assembled complex has hindered an understanding of how Microprocessor recognizes primary microRNA transcripts (pri-miRNAs). Here we present a cryoelectron microscopy structure of human Microprocessor with a pri-miRNA docked in the active site, poised for cleavage. The basal junction is recognized by a four-way intramolecular junction in Drosha, triggered by the Belt and Wedge regions that clamp over the ssRNA. The belt is important for efficiency and accuracy of pri-miRNA processing. Two dsRBDs form a molecular ruler to measure the stem length between the two dsRNA-ssRNA junctions. The specific organization of the dsRBDs near the apical junction is independent of Drosha core domains, as observed in a second structure in the partially docked state. Collectively, we derive a molecular model to explain how Microprocessor recognizes a pri-miRNA and accurately identifies the cleavage site.


Assuntos
MicroRNAs/química , Proteínas de Ligação a RNA/química , Ribonuclease III/química , Microscopia Crioeletrônica , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Conformação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
9.
Mol Cell ; 78(5): 876-889.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502422

RESUMO

Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , MicroRNAs/genética , Proteínas Associadas à Matriz Nuclear/genética , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/genética
10.
Mol Cell ; 73(3): 505-518.e5, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554947

RESUMO

Microprocessor, composed of DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) biogenesis by processing the primary transcripts of miRNA (pri-miRNAs). Here we investigate the mechanism by which Microprocessor selects the cleavage site with single-nucleotide precision, which is crucial for the specificity and functionality of miRNAs. By testing ∼40,000 pri-miRNA variants, we find that for some pri-miRNAs the cleavage site is dictated mainly by the mGHG motif embedded in the lower stem region of pri-miRNA. Structural modeling and deep-sequencing-based complementation experiments show that the double-stranded RNA-binding domain (dsRBD) of DROSHA recognizes mGHG to place the catalytic center in the appropriate position. The mGHG motif as well as the mGHG-recognizing residues in DROSHA dsRBD are conserved across eumetazoans, suggesting that this mechanism emerged in an early ancestor of the animal lineage. Our findings provide a basis for the understanding of miRNA biogenesis and rational design of accurate small-RNA-based gene silencing.


Assuntos
MicroRNAs/metabolismo , Motivos de Nucleotídeos , Processamento Pós-Transcricional do RNA , Ribonuclease III/metabolismo , Células HCT116 , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/química , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Mol Cell ; 75(2): 340-356.e10, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31253575

RESUMO

The microRNAs encoded by the miR-17∼92 polycistron are commonly overexpressed in cancer and orchestrate a wide range of oncogenic functions. Here, we identify a mechanism for miR-17∼92 oncogenic function through the disruption of endogenous microRNA (miRNA) processing. We show that, upon oncogenic overexpression of the miR-17∼92 primary transcript (pri-miR-17∼92), the microprocessor complex remains associated with partially processed intermediates that aberrantly accumulate. These intermediates reflect a series of hierarchical and conserved steps in the early processing of the pri-miR-17∼92 transcript. Encumbrance of the microprocessor by miR-17∼92 intermediates leads to the broad but selective downregulation of co-expressed polycistronic miRNAs, including miRNAs derived from tumor-suppressive miR-34b/c and from the Dlk1-Dio3 polycistrons. We propose that the identified steps of polycistronic miR-17∼92 biogenesis contribute to the oncogenic re-wiring of gene regulation networks. Our results reveal previously unappreciated functional paradigms for polycistronic miRNAs in cancer.


Assuntos
Carcinogênese/genética , MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação ao Cálcio/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Iodeto Peroxidase/genética , Proteínas de Membrana/genética , MicroRNAs/biossíntese , Conformação de Ácido Nucleico
12.
Trends Genet ; 39(5): 401-414, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863945

RESUMO

MicroRNAs (miRNAs) play vital roles in the regulation of gene expression, a process known as miRNA-induced gene silencing. The human genome codes for many miRNAs, and their biogenesis relies on a handful of genes, including DROSHA, DGCR8, DICER1, and AGO1/2. Germline pathogenic variants (GPVs) in these genes cause at least three distinct genetic syndromes, with clinical manifestations that range from hyperplastic/neoplastic entities to neurodevelopmental disorders (NDDs). Over the past decade, DICER1 GPVs have been shown to lead to tumor predisposition. Moreover, recent findings have provided insight into the clinical consequences arising from GPVs in DGCR8, AGO1, and AGO2. Here we provide a timely update with respect to how GPVs in miRNA biogenesis genes alter miRNA biology and ultimately lead to their clinical manifestations.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Genótipo , Genoma Humano , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
13.
Dev Biol ; 506: 72-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110169

RESUMO

The DGCR8 gene, encoding a critical miRNA processing protein, maps within the hemizygous region in patients with 22q11.2 deletion syndrome. Most patients have malformations of the cardiac outflow tract that is derived in part from the anterior second heart field (aSHF) mesoderm. To understand the function of Dgcr8 in the aSHF, we inactivated it in mice using Mef2c-AHF-Cre. Inactivation resulted in a fully penetrant persistent truncus arteriosus and a hypoplastic right ventricle leading to lethality by E14.5. To understand the molecular mechanism for this phenotype, we performed gene expression profiling of the aSHF and the cardiac outflow tract with right ventricle in conditional null versus normal mouse littermates at stage E9.5 prior to morphology changes. We identified dysregulation of mRNA gene expression, of which some are relevant to cardiogenesis. Many pri-miRNA genes were strongly increased in expression in mutant embryos along with reduced expression of mature miRNA genes. We further examined the individual, mature miRNAs that were decreased in expression along with pri-miRNAs that were accumulated that could be direct effects due to loss of Dgcr8. Among these genes, were miR-1a, miR-133a, miR-134, miR143 and miR145a, which have known functions in heart development. These early mRNA and miRNA changes may in part, explain the first steps that lead to the resulting phenotype in Dgcr8 aSHF conditional mutant embryos.


Assuntos
Ventrículos do Coração , MicroRNAs , Humanos , Camundongos , Animais , Ventrículos do Coração/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mamíferos/metabolismo , RNA Mensageiro
14.
Mol Cell ; 66(2): 258-269.e5, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431232

RESUMO

MicroRNA (miRNA) maturation is initiated by DROSHA, a double-stranded RNA (dsRNA)-specific RNase III enzyme. By cleaving primary miRNAs (pri-miRNAs) at specific positions, DROSHA serves as a main determinant of miRNA sequences and a highly selective gatekeeper for the canonical miRNA pathway. However, the sites of DROSHA-mediated processing have not been annotated, and it remains unclear to what extent DROSHA functions outside the miRNA pathway. Here, we establish a protocol termed "formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq)," which allows identification of DROSHA cleavage sites at single-nucleotide resolution. fCLIP identifies numerous processing sites, suggesting widespread end modifications during miRNA maturation. fCLIP also finds many pri-miRNAs that undergo alternative processing, yielding multiple miRNA isoforms. Moreover, we discovered dozens of DROSHA substrates on non-miRNA loci, which may serve as cis-elements for DROSHA-mediated gene regulation. We anticipate that fCLIP-seq could be a general tool for investigating interactions between dsRNA-binding proteins and structured RNAs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Ribonuclease III/metabolismo , Análise de Sequência de RNA/métodos , Sequência de Bases , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Formaldeído/química , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , MicroRNAs/química , MicroRNAs/genética , Conformação de Ácido Nucleico , Ligação Proteica , Interferência de RNA , Ribonuclease III/química , Ribonuclease III/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Transfecção
15.
Proc Natl Acad Sci U S A ; 119(45): e2212942119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322738

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression after transcription. miRNAs are present in transcriptionally quiescent full-grown oocytes and preimplantation embryos that display a low level of transcription prior to embryonic genome activation. The role of miRNAs, if any, in preimplantation development is not known. The temporal pattern of expression of miRNAs during bovine preimplantation development was determined by small RNA-sequencing using eggs and preimplantation embryos (1-cell, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst). Embryos cultured in the presence of α-amanitin, which permitted the distinguishing of maternal miRNAs from embryonic miRNAs, indicated that embryonic miRNA expression was first detected at the two-cell stage but dramatically increased during the morula and blastocyst stages. Targeting DGCR8 by a small-interfering RNA/morpholino approach revealed a role for miRNAs in the morula-to-blastocyst transition. Knockdown of DGCR8 not only inhibited expression of embryonically expressed miRNAs but also inhibited the morula-to-blastocyst transition. In addition, RNA-sequencing identified an increased relative abundance of messenger RNAs potentially targeted by embryonic miRNAs in DGCR8-knockdown embryos when compared with controls. Results from these experiments implicate an essential role for miRNAs in bovine preimplantation embryo development.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Gravidez , Feminino , Bovinos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Desenvolvimento Embrionário/genética , Blastocisto/metabolismo , Pequeno RNA não Traduzido/metabolismo
16.
Mol Cell ; 63(3): 420-32, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27425409

RESUMO

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.


Assuntos
Cromatina/metabolismo , MicroRNAs/biossíntese , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Animais , Sítios de Ligação , Cromatina/genética , Imunoprecipitação da Cromatina , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma Humano , Células HeLa , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética , Ligação Proteica , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transfecção
17.
Tohoku J Exp Med ; 260(3): 193-204, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37045786

RESUMO

Oral squamous cell carcinoma (OSCC) remains the most prevalent malignance in the head and neck with highly aggressive attributes. This study investigates the functions of nuclear receptor interacting protein 1 (NRIP1) and its target transcripts in the progression of OSCC. By analyzing four OSCC-related Gene Expression Omnibus (GEO) datasets (GSE9844, GSE23558, GSE25104 and GSE74530) and querying bioinformatics systems, we obtained NRIP1 as an aberrantly highly expressed transcription factor in OSCC. Increased NRIP1 was detected in OSCC cell lines. Artificial downregulation of NRIP1 significantly suppressed proliferation, migration and invasion, resistance to apoptosis, tumorigenicity, and in vivo metastatic potential of OSCC cells. Moreover, the bioinformatics analyses suggested nuclear receptor binding SET domain protein 2 (NSD2) as a target of NRIP1 and DGCR8 microprocessor complex subunit (DGCR8) as a target of NSD2. Indeed, we validated by chromatin immunoprecipitation and luciferase assays that NRIP1 activated the transcription of NSD2, and NSD2 increased DGCR8 transcription by modulating histone methylation near the DGCR8 promoter. Either NSD2 or DGCR8 upregulation in OSCC cells rescued their malignant properties. Collectively, this study demonstrates that NRIP1 augments malignant properties of OSCC cells by activating NSD2-mediated histone methylation of DGCR8.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , MicroRNAs/genética , Histonas/genética , Histonas/metabolismo , Proteína 1 de Interação com Receptor Nuclear/genética , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Metilação de DNA , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
18.
Hum Mutat ; 43(10): 1368-1376, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723634

RESUMO

Schwannomatosis comprises a group of hereditary tumor predisposition syndromes characterized by, usually benign, multiple nerve sheath tumors, which frequently cause severe pain that does not typically respond to drug treatments. The most common schwannomatosis-associated gene is NF2, but SMARCB1 and LZTR1 are also associated. There are still many cases in which no pathogenic variants (PVs) have been identified, suggesting the existence of as yet unidentified genetic risk factors. In this study, we performed extended genetic screening of 75 unrelated schwannomatosis patients without identified germline PVs in NF2, LZTR1, or SMARCB1. Screening of the coding region of DGCR8, COQ6, CDKN2A, and CDKN2B was carried out, based on previous reports that point to these genes as potential candidate genes for schwannomatosis. Deletions or duplications in CDKN2A, CDKN2B, and adjacent chromosome 9 region were assessed by multiplex ligation-dependent probe amplification analysis. Sequencing analysis of a patient with multiple schwannomas and melanomas identified a novel duplication in the coding region of CDKN2A, disrupting both p14ARF and p16INK4a. Our results suggest that none of these genes are major contributors to schwannomatosis risk but the possibility remains that they may have a role in more complex mechanisms for tumor predisposition.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Neurilemoma , Neurofibromatoses , Neoplasias Cutâneas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/genética , Proteínas de Ligação a RNA , Proteína SMARCB1/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética
19.
J Biol Chem ; 296: 100707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901493

RESUMO

miRNAs are important regulators of eukaryotic gene expression. The post-transcriptional maturation of miRNAs is controlled by the Drosha-DiGeorge syndrome critical region gene 8 (DGCR8) microprocessor. Dysregulation of miRNA biogenesis has been implicated in the pathogenesis of human diseases, including cancers. C-terminal-binding protein-interacting protein (CtIP) is a well-known DNA repair factor that promotes the processing of DNA double-strand break (DSB) to initiate homologous recombination-mediated DSB repair. However, it was unclear whether CtIP has other unknown cellular functions. Here, we aimed to uncover the roles of CtIP in miRNA maturation and cancer cell metastasis. We found that CtIP is a potential regulatory factor that suppresses the processing of miRNA primary transcripts (pri-miRNA). CtIP directly bound to both DGCR8 and pri-miRNAs through a conserved Sae2-like domain, reduced the binding of Drosha to DGCR8 and pri-miRNA substrate, and inhibited processing activity of Drosha complex. CtIP depletion significantly increased the expression levels of a subset of mature miRNAs, including miR-302 family members that are associated with tumor progression and metastasis in several cancer types. We also found that CtIP-inhibited miRNAs, such as miR-302 family members, are not crucial for DSB repair. However, increase of miR-302b levels or loss of CtIP function severely suppressed human colon cancer cell line tumor cell metastasis in a mouse xenograft model. These studies reveal a previously unrecognized mechanism of CtIP in miRNA processing and tumor metastasis that represents a new function of CtIP in cancer.


Assuntos
Transformação Celular Neoplásica , Neoplasias do Colo/patologia , Endodesoxirribonucleases/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Metástase Neoplásica , Proteínas Proto-Oncogênicas pp60(c-src)
20.
J Biol Chem ; 296: 100409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581109

RESUMO

Microprocessor complex, including DiGeorge syndrome critical region gene 8 (DGCR8) and DROSHA, recognizes and cleaves primary transcripts of microRNAs (pri-miRNAs) in the maturation of canonical miRNAs. The study of DGCR8 haploinsufficiency reveals that the efficiency of this activity varies for different miRNA species. It is thought that this variation might be associated with the risk of schizophrenia with 22q11 deletion syndrome caused by disruption of the DGCR8 gene. However, the underlying mechanism for varying action of DGCR8 with each miRNA remains largely unknown. Here, we used in vivo monitoring to measure the efficiency of DGCR8-dependent microprocessor activity in cultured cells. We confirmed that this system recapitulates the microprocessor activity of endogenous pri-miRNA with expression of a ratiometric fluorescence reporter. Using this system, we detected mir-9-2 as one of the most efficient targets. We also identified a novel DGCR8-responsive RNA element, which is highly conserved among mammalian species and could be regulated at the epi-transcriptome (RNA modification) level. This unique feature between DGCR8 and pri-miR-9-2 processing may suggest a link to the risk of schizophrenia.


Assuntos
MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Haploinsuficiência/genética , Humanos , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA