Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(6): 2474-2483, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723918

RESUMO

The production of bioenergy with carbon capture and storage (BECCS) is a pivotal negative emission technology. The cultivation of dedicated crops for BECCS impacts the temperature through two processes: net CO2 removal (CDR) from the atmosphere (biogeochemical cooling) and changes in the local energy balance (biophysical warming or cooling). Here, we compare the magnitude of these two processes for key grass and tree species envisioned for large-scale bioenergy crop cultivation, following economically plausible scenarios using Earth System Models. By the end of this century, the cumulative CDR from the cultivation of eucalypt (72-112 Pg C) is larger than that of switchgrass (34-83 Pg C) because of contrasting contributions of land use change carbon emissions. The combined biogeochemical and biophysical effects are cooling (-0.26 to -0.04 °C) at the global scale, but 13-28% of land areas still have net warming signals, mainly due to the spatial heterogeneity of the biophysical effects. Our study shows that the deployment of bioenergy crop cultivation should not only be guided by the principles of maximizing yield and CDR but should also take an integrated perspective that includes all relevant Earth system feedbacks.


Assuntos
Produtos Agrícolas , Poaceae , Temperatura , Carbono
2.
Glob Chang Biol ; 28(11): 3557-3579, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35212092

RESUMO

The global distribution of vegetation is largely determined by climatic conditions and feeds back into the climate system. To predict future vegetation changes in response to climate change, it is crucial to identify and understand key patterns and processes that couple vegetation and climate. Dynamic global vegetation models (DGVMs) have been widely applied to describe the distribution of vegetation types and their future dynamics in response to climate change. As a process-based approach, it partly relies on hard-coded climate thresholds to constrain the distribution of vegetation. What thresholds to implement in DGVMs and how to replace them with more process-based descriptions remain among the major challenges. In this study, we employ machine learning using decision trees to extract large-scale relationships between the global distribution of vegetation and climatic characteristics from remotely sensed vegetation and climate data. We analyse how the dominant vegetation types are linked to climate extremes as compared to seasonally or annually averaged climatic conditions. The results show that climate extremes allow us to describe the distribution and eco-climatological space of the vegetation types more accurately than the averaged climate variables, especially those types which occupy small territories in a relatively homogeneous ecological space. Future predicted vegetation changes using both climate extremes and averaged climate variables are less prominent than that predicted by averaged climate variables and are in better agreement with those of DGVMs, further indicating the importance of climate extremes in determining geographic distributions of different vegetation types. We found that the temperature thresholds for vegetation types (e.g. grass and open shrubland) in cold environments vary with moisture conditions. The coldest daily maximum temperature (extreme cold day) is particularly important for separating many different vegetation types. These findings highlight the need for a more explicit representation of the impacts of climate extremes on vegetation in DGVMs.


Assuntos
Mudança Climática , Aprendizado de Máquina , Previsões , Temperatura
3.
Glob Chang Biol ; 26(7): 4119-4133, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239563

RESUMO

The majority of northern peatlands were initiated during the Holocene. Owing to their mass imbalance, they have sequestered huge amounts of carbon in terrestrial ecosystems. Although recent syntheses have filled some knowledge gaps, the extent and remoteness of many peatlands pose challenges to developing reliable regional carbon accumulation estimates from observations. In this work, we employed an individual- and patch-based dynamic global vegetation model (LPJ-GUESS) with peatland and permafrost functionality to quantify long-term carbon accumulation rates in northern peatlands and to assess the effects of historical and projected future climate change on peatland carbon balance. We combined published datasets of peat basal age to form an up-to-date peat inception surface for the pan-Arctic region which we then used to constrain the model. We divided our analysis into two parts, with a focus both on the carbon accumulation changes detected within the observed peatland boundary and at pan-Arctic scale under two contrasting warming scenarios (representative concentration pathway-RCP8.5 and RCP2.6). We found that peatlands continue to act as carbon sinks under both warming scenarios, but their sink capacity will be substantially reduced under the high-warming (RCP8.5) scenario after 2050. Areas where peat production was initially hampered by permafrost and low productivity were found to accumulate more carbon because of the initial warming and moisture-rich environment due to permafrost thaw, higher precipitation and elevated CO2 levels. On the other hand, we project that areas which will experience reduced precipitation rates and those without permafrost will lose more carbon in the near future, particularly peatlands located in the European region and between 45 and 55°N latitude. Overall, we found that rapid global warming could reduce the carbon sink capacity of the northern peatlands in the coming decades.


Assuntos
Carbono , Pergelissolo , Regiões Árticas , Ciclo do Carbono , Ecossistema
4.
Int J Biometeorol ; 60(7): 945-55, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26498437

RESUMO

Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.


Assuntos
Modelos Teóricos , Fenômenos Fisiológicos Vegetais , Aclimatação , Dióxido de Carbono , Temperatura
5.
New Phytol ; 200(2): 304-321, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24004027

RESUMO

SUMMARY: Model-data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a piñon pine-juniper woodland (Pinus edulis-Juniperus monosperma) that experienced mortality during a 5 yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model-data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics.


Assuntos
Carbono/metabolismo , Juniperus/fisiologia , Modelos Biológicos , Pinus/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Secas , Juniperus/crescimento & desenvolvimento , Floema/crescimento & desenvolvimento , Floema/fisiologia , Pinus/crescimento & desenvolvimento , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Chuva , Estresse Fisiológico , Temperatura , Árvores
6.
Braz. j. biol ; 76(2): 341-351, Apr.-June 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-781398

RESUMO

Abstract The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga.


Resumo A região semiárida do nordeste do Brasil, a Caatinga, é extremamente importante devido à sua biodiversidade e endemismo. Medidas de fisiologia vegetal são cruciais para a calibração de Modelos de Vegetação Globais Dinâmicos (DGVMs) que são atualmente usados para simular as respostas da vegetação diante das mudanças globais. Em um trabalho de campo realizado em uma área de floresta preservada na Caatinga localizada em Petrolina, Pernambuco, medidas de assimilação de carbono (em resposta à luz e ao CO2) foram realizadas em 11 indivíduos de Poincianella microphylla, uma espécie nativa que é abundante nesta região. Estes dados foram utilizados para calibrar a velocidade máxima de carboxilação (Vcmax) usada no modelo INLAND. As técnicas de calibração utilizadas foram Regressão Linear Múltipla (MLR) e técnicas de mineração de dados como Classification And Regression Tree (CART) e K-MEANS. Os resultados foram comparados com o modelo INLAND não calibrado. Verificou-se que a Produtividade Primária Bruta (PPB) simulada atingiu 72% da PPB observada ao usar os valores de Vcmax calibrado, enquanto que o modelo não calibrado obteve-se 42% da PPB observada. Assim, este trabalho mostra os benefícios de calibrar DGVMs usando medidas ecofisiológicas de campo, especialmente em áreas onde os dados de campo são escassos ou inexistentes, como na Caatinga.


Assuntos
Árvores/classificação , Florestas , Caesalpinia/crescimento & desenvolvimento , Caesalpinia/fisiologia , Brasil , Calibragem , Modelos Lineares , Biodiversidade , Fenômenos Ecológicos e Ambientais , Aquecimento Global , Mineração de Dados/métodos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA