Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 154(6): 1097-1110, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095490

RESUMO

Gastrointestinal bacteria are known to have an impact on local and systemic immunity, and consequently either promote or suppress cancer development. Following the notion that perinatal bacterial exposure might confer immune system competency for life, we investigated whether early-life administration of cholera-toxin (CT), a protein exotoxin of the small intestine pathogenic bacterium Vibrio cholerae, may shape local and systemic immunity to impart a protective effect against tumor development in epithelia distantly located from the gut. For that, newborn mice were orally treated with low non-pathogenic doses of CT and later challenged with the carcinogen 7,12-dimethylbenzanthracene (DMBA), known to cause mainly mammary, but also skin, lung and stomach cancer. Our results revealed that CT suppressed the overall incidence and multiplicity of tumors, with varying efficiencies among cancer types, and promoted survival. Harvesting mouse tissues at an earlier time-point (105 instead of 294 days), showed that CT does not prevent preneoplastic lesions per se but it rather hinders their evolution into tumors. CT pretreatment universally increased apoptosis in the cancer-prone mammary, lung and nonglandular stomach, and altered the expression of several cancer-related molecules. Moreover, CT had a long-term effect on immune system cells and factors, the most prominent being the systemic neutrophil decrease. Finally, CT treatment significantly affected gut bacterial flora composition, leading among others to a major shift from Clostridia to Bacilli class abundance. Overall, these results support the notion that early-life CT consumption is able to affect host's immune, microbiome and gene expression profiles toward the prevention of cancer.


Assuntos
Neoplasias , Vibrio cholerae , Animais , Camundongos , Toxina da Cólera , Desmame , Carcinogênese/induzido quimicamente
2.
Cancer Sci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898727

RESUMO

By taking advantage of forward genetic analysis in mice, we have demonstrated that Pak1 plays a crucial role during DMBA/TPA skin carcinogenesis. Although Pak1 has been considered to promote cancer development, its overall function remains poorly understood. To clarify the functional significance of Pak1 in detail, we sought to evaluate the possible effect of an allosteric inhibitor against PAK1 (NVS-PAK1-1) on a syngeneic mouse model. To this end, we established two cell lines, 9AS1 and 19AS1, derived from DMBA/TPA-induced squamous cell carcinoma (SCC) that engrafted in FVB mice. Based on our present results, NVS-PAK1-1 treatment significantly inhibited the growth of tumors derived from 9AS1 and 19AS1 cells in vitro and in vivo. RNA-sequencing analysis on the engrafted tumors indicates that NVS-PAK1-1 markedly potentiates the epidermal cell differentiation and enhances the immune response in the engrafted tumors. Consistent with these observations, we found an expansion of Pan-keratin-positive regions and potentially elevated infiltration of CD8-positive immune cells in NVS-PAK1-1-treated tumors as examined by immunohistochemical analyses. Together, our present findings strongly suggest that PAK1 is tightly linked to the development of SCC, and that its inhibition is a promising therapeutic strategy against SCC.

3.
Biol Reprod ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813940

RESUMO

Obesity and ovotoxicant exposures impair female reproductive health with greater ovotoxicity reported in obese relative to lean females. The mother and developing fetus are vulnerable to both during gestation. 7,12-dimethylbenz[a]anthracene (DMBA) is released during carbon combustion including from cigarettes, coal, fossil fuels and forest fires. This study investigated the hypothesis that diet-induced obesity would increase sensitivity of the ovaries to DMBA-induced ovotoxicity and determined impacts of both obesity and DMBA exposure during gestation on the maternal ovary. Female C57BL/6 J mice were fed a control (CT) or a High Sugar High Fat (HSHF; 45% kcal from fat; 20% kcal from sucrose) diet until ~30% weight gain was attained before mating with unexposed males. From gestation day 7, mice were exposed intraperitoneally to either vehicle control (corn oil) or DMBA (1 mg/kg diluted in corn oil) for 7 d. Thus, there were four groups: lean control (LC); lean DMBA exposed (LD); obese control (OC); obese DMBA exposed (OD). Gestational obesity and DMBA exposure decreased (P < 0.05) ovarian and increased liver weights relative to LC dams, but there was no treatment impact (P > 0.05) on spleen weight or progesterone. Also, obesity exacerbated the DMBA reduction (P < 0.05) in the number of primordial, secondary follicles and corpora lutea. In lean mice, DMBA exposure altered abundance of 21 proteins; in obese dams, DMBA exposure affected 134 proteins while obesity alone altered 81 proteins in the maternal ovary. Thus, the maternal ovary is impacted by DMBA exposure and metabolic status influences the outcome.

4.
Biol Reprod ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625059

RESUMO

Both obesity and exposure to environmental genotoxicants, such as 7,12-dimethylbenz[a]anthracene (DMBA), negatively impair female reproductive health. Hyperphagic lean KK.Cg-a/a (n = 8) and obese KK.Cg-Ay/J (n = 10) mice were exposed to corn oil as vehicle control (CT) or DMBA (1 mg/kg/day) for 7d intraperitoneally, followed by a recovery period. Obesity increased liver and spleen weight (P < 0.05), and DMBA exposure decreased uterine weight (P < 0.05) in obese mice. Primordial follicle loss (P < 0.05) caused by DMBA exposure was observed in obese mice only. Primary (lean P < 0.1; obese P < 0.05) and secondary (lean P < 0.05, obese P < 0.1) follicle loss initiated by DMBA exposure continued across recovery. Reduced pre-antral follicle number in lean mice (P < 0.05), regardless of DMBA exposure, was evident with no effect on antral follicles or corpora lutea number. Immunofluorescence staining of DNA damage marker, γH2AX, did not indicate ongoing DNA damage but TRP53 abundance was decreased in follicles (P < 0.05) of DMBA-exposed obese mice. In contrast, increased (P < 0.05) superoxide dismutase was observed in the corpora lutea of DMBA-exposed obese mice and reduced (P < 0.05) TRP53 abundance was noted in preantral and antral follicles of DMBA-exposed obese mice. This study indicates that obesity influences ovotoxicity caused by a genotoxicant, potentially involving accelerated primordial follicle activation and hampering normal follicular dynamics.

5.
Biol Reprod ; 110(2): 419-429, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856498

RESUMO

Histones are slowly evolving chromatin components and chromatin remodeling can incorporate histone variants differing from canonical histones as an epigenetic modification. Several identified histone variants are involved with the environmental stress-induced DNA damage response (DDR). Mechanisms of DDR in transcriptionally inactive, prophase-arrested oocytes and epigenetic regulation are under-explored in ovarian toxicology. The study objective was to identify ovarian proteomic and histone modifications induced by DMBA exposure and an influence of obesity. Post-pubertal wildtype (KK.Cg-a/a; lean) and agouti (KK.Cg-Ay/J; obese) female mice, were exposed to either corn oil (control; CT) or DMBA (1 mg/kg) for 7d via intraperitoneal injection (n = 10/treatment). Ovarian proteome analysis (LC-MS/MS) determined that obesity altered 225 proteins (P < 0.05) with histone 3 being the second least abundant (FC = -5.98, P < 0.05). Histone 4 decreased by 3.33-fold, histone variant H3.3 decreased by 3.05-fold, and H1.2, H1.4 and H1.1(alpha) variants increased by 1.59, 1.90 and 2.01-fold, respectively (P < 0.05). DMBA exposure altered 48 proteins in lean mice with no observed alterations in histones or histone variants. In obese mice, DMBA exposure altered 120 proteins and histone 2B abundance increased by 0.30-fold (P < 0.05). In DMBA-exposed mice, obesity altered the abundance of 634 proteins. Histones 4, 3 and 2A type 1-F decreased by 4.03, 3.71, 0.43-fold, respectively, whereas histone variant H1.2 and linker histone, H15 increased by 2.72- and 3.07-fold, respectively (P < 0.05). Thus, DMBA exposure alters histones and histone variants, and responsivity is more pronounced during obesity, potentially altering ovarian transcriptional regulation.


Assuntos
Epigênese Genética , Histonas , Camundongos , Feminino , Animais , Histonas/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Cromatina , Obesidade/induzido quimicamente , Obesidade/genética
6.
J Biochem Mol Toxicol ; 38(1): e23553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840363

RESUMO

In this study, we investigated the chemopreventive efficacy of usnic acid (UA), an effective secondary metabolite component of lichens, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinoma (OSCC) in the hamster model. Initially, the buccal pouch carcinogenesis was induced by administering 0.5% DMBA to the HBP (hamster buccal pouch) region about three times a week until the 10th week. Then, UA was orally treated with different concentrations (25, 50, 100 mg/kg b.wt) on alternative days of DMBA exposure, and the experimental process ended in the 16th week. After animal experimentation, we observed 100% tumor incidence with well-differentiated OSCC, dysplasia, and hyperplasia lesions in the DMBA-induced HBP region. Furthermore, the UA treatment of DMBA-induced hamster effectively inhibited tumor growth. In addition, UA upregulated antioxidant levels, interfered with the elevated lipid peroxidation by-product of thiobarbituric acid reactive substances, and changed the activities of the liver detoxification enzyme (Phase I and II) in DMBA-induced hamsters. Furthermore, immunohistochemical staining of inflammatory markers (iNOS and COX-2) and proliferative cell markers (cyclin-D1 and PCNA) were upregulated in the buccal pouch part of hamster animals induced with DMBA. Notably, the oral administration of UA significantly suppressed these markers during DMBA-induced hamsters. Collectively, our findings revealed that UA exhibits antioxidant, anti-inflammatory, antitumor, and apoptosis-inducing characteristics, demonstrating UA's protective properties against DMBA-induced HBP carcinogenesis.


Assuntos
Benzofuranos , Carcinoma de Células Escamosas , Neoplasias Bucais , Cricetinae , Animais , Masculino , Mesocricetus , Antioxidantes/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Carcinoma de Células Escamosas/induzido quimicamente , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/prevenção & controle , Neoplasias Bucais/patologia , Carcinogênese/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Estresse Oxidativo , Proliferação de Células , Antracenos , Carcinógenos/toxicidade
7.
J Biochem Mol Toxicol ; 38(4): e23679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486411

RESUMO

Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.


Assuntos
Antineoplásicos , Benzimidazóis , Carbocianinas , Carcinoma , Chalcona , Chalconas , Humanos , Prolil Hidroxilases , Chalconas/farmacologia , Antineoplásicos/farmacologia , Laranja de Acridina , Apoptose , Microambiente Tumoral
8.
Biol Reprod ; 108(4): 694-707, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36702632

RESUMO

Obesity adversely affects reproduction, impairing oocyte quality, fecundity, conception, and implantation. The ovotoxicant, dimethylbenz[a]anthracene, is biotransformed into a genotoxic metabolite to which the ovary responds by activating the ataxia telangiectasia mutated DNA repair pathway. Basal ovarian DNA damage coupled with a blunted response to genotoxicant exposure occurs in obese females, leading to the hypothesis that obesity potentiates ovotoxicity through ineffective DNA damage repair. Female KK.Cg-a/a (lean) and KK.Cg-Ay/J (obese) mice received corn oil or dimethylbenz[a]anthracene (1 mg/kg) at 9 weeks of age for 7 days via intraperitoneal injection (n = 10/treatment). Obesity increased liver weight (P < 0.001) and reduced (P < 0.05) primary, preantral, and corpora lutea number. In lean mice, dimethylbenz[a]anthracene exposure tended (P < 0.1) to increase proestrus duration and reduced (P = 0.07) primordial follicle number. Dimethylbenz[a]anthracene exposure decreased (P < 0.05) uterine weight and increased (P < 0.05) primary follicle number in obese mice. Total ovarian abundance of BRCA1, γH2AX, H3K4me, H4K5ac, H4K12ac, and H4K16ac (P > 0.05) was unchanged by obesity or dimethylbenz[a]anthracene exposure. Immunofluorescence staining demonstrated decreased (P < 0.05) abundance of γH2AX foci in antral follicles of obese mice. In primary follicle oocytes, BRCA1 protein was reduced (P < 0.05) by dimethylbenz[a]anthracene exposure in lean mice. Obesity also decreased (P < 0.05) BRCA1 protein in primary follicle oocytes. These findings support both a follicle stage-specific ovarian response to dimethylbenz[a]anthracene exposure and an impact of obesity on this ovarian response.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Proteína BRCA1 , Camundongos , Animais , Feminino , Proteína BRCA1/genética , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Camundongos Obesos , RNA Mensageiro/metabolismo , Reparo do DNA , Obesidade/induzido quimicamente , Obesidade/genética , Dano ao DNA
9.
J Transl Med ; 21(1): 110, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765430

RESUMO

BACKGROUND: Preclinical evidence from us and others demonstrates that the anticancer effects of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors can be enhanced with focal radiation therapy (RT), but only when RT is delivered prior to (rather than after) CDK4/6 inhibition. Depending on tumor model, cellular senescence (an irreversible proliferative arrest that is associated with the secretion of numerous bioactive factors) has been attributed beneficial or detrimental effects on response to treatment. As both RT and CDK4/6 inhibitors elicit cellular senescence, we hypothesized that a differential accumulation of senescent cells in the tumor microenvironment could explain such an observation, i.e., the inferiority of CDK4/6 inhibition with palbociclib (P) followed by RT (P→RT) as compared to RT followed by palbociclib (RT→P). METHODS: The impact of cellular senescence on the interaction between RT and P was assessed by harnessing female INK-ATTAC mice, which express a dimerizable form of caspase 8 (CASP8) under the promoter of cyclin dependent kinase inhibitor 2A (Cdkn2a, coding for p16Ink4), as host for endogenous mammary tumors induced by the subcutaneous implantation of medroxyprogesterone acetate (MPA, M) pellets combined with the subsequent oral administration of 7,12-dimethylbenz[a]anthracene (DMBA, D). This endogenous mouse model of HR+ mammary carcinogenesis recapitulates key immunobiological aspects of human HR+ breast cancer. Mice bearing M/D-driven tumors were allocated to RT, P or their combination in the optional presence of the CASP8 dimerizer AP20187, and monitored for tumor growth, progression-free survival and overall survival. In parallel, induction of senescence in vitro, in cultured human mammary hormone receptor (HR)+ adenocarcinoma MCF7 cells, triple negative breast carcinoma MDA-MB-231 cells and mouse HR+ mammary carcinoma TS/A cells treated with RT, P or their combination, was determined by colorimetric assessment of senescence-associated ß-galactosidase activity after 3 or 7 days of treatment. RESULTS: In vivo depletion of p16Ink4-expressing (senescent) cells ameliorated the efficacy of P→RT (but not that of RT→P) in the M/D-driven model of HR+ mammary carcinogenesis. Accordingly, P→RT induced higher levels of cellular senescence than R→TP in cultured human and mouse breast cancer cell lines. CONCLUSIONS: Pending validation in other experimental systems, these findings suggest that a program of cellular senescence in malignant cells may explain (at least partially) the inferiority of P→RT versus RT→P in preclinical models of HR+ breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Camundongos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Quinase 6 Dependente de Ciclina , Senescência Celular/fisiologia , Proteínas de Transporte/metabolismo , Carcinogênese , Microambiente Tumoral , Quinase 4 Dependente de Ciclina/metabolismo
10.
Pharmacol Res ; 194: 106846, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414199

RESUMO

Malignant proliferation and metastasis are the main causes of breast cancer death. The transcription factor high mobility group (HMG) box-containing protein 1 (HBP1) is an important tumor suppressor whose deletion or mutation is closely related to the appearance of tumors. Here, we investigated the role of HBP1 in breast cancer suppression. HBP1 enhances the activity of the tissue inhibitors of metalloproteinases 3 (TIMP3) promoter, thereby increasing protein and mRNA levels of TIMP3. TIMP3 increases the phosphatase and tensin homolog (PTEN) protein level by inhibiting its degradation and acts as a metalloproteinase inhibitor to inhibit the protein levels of MMP2/9. In this study, we demonstrated that the HBP1/TIMP3 axis plays a crucial role in inhibiting the tumorigenesis of breast cancer. HBP1 deletion interferes with the regulation of the axis and induces the occurrence and malignant progression of breast cancer. In addition, the HBP1/TIMP3 axis promotes the sensitivity of breast cancer to radiation therapy and hormone therapy. Our study opens new perspectives on the treatment and prognosis of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Mensageiro/genética , Prognóstico , Regiões Promotoras Genéticas , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
11.
J Biochem Mol Toxicol ; 37(10): e23423, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352108

RESUMO

C-type natriuretic peptide (CNP) exhibits anti-inflammatory activity besides its natriuretic and diuretic functions. The present study aimed to determine the anticancer and synergistic therapeutic activity of CNP against a 7,12-Dimethylbenz[a]anthracene (DMBA)/Croton oil-induced skin tumor mouse model. CNP (2.5 µg/kg body weight) was injected either alone and/or in combination with Cisplatin (CDDP) (2 mg/kg body weight) for 4 weeks. The dorsal skin tumor incidences/growth and mortality rate were recorded during the experimental period of 16 weeks. The serum C-reactive protein (CRP), and lactate dehydrogenase (LDH) levels, infiltrating mast cells, and AgNORs proliferating cells count were analyzed in control and experimental mice. Further, the expression profile of marker genes of proliferation, inflammation, and progression molecules were analyzed using Reverse transcriptase-polymerase chain reaction (RT-PCR)/quantitative PCR (qPCR), western blot, and immunohistochemistry. The DMBA/Croton oil-induced mice exhibited 100% tumor incidence. Whereas, CNP alone, CDDP alone, and CNP+CDDP combination-treated mice exhibited 58%, 46%, and 24% tumor incidence, respectively. Also, a marked reduction in the levels of serum CRP and LDH, the number of infiltrating mast cells count and AgNORs proliferating cells count were noticed in the mice skin sections. Further, a significant reduction in both mRNA and protein expression levels of proliferation, inflammation, and progression markers were noticed in CNP (p < 0.01), CDDP (p < 0.01), and CNP+CDDP combination (p < 0.001) treated mice, respectively. The results of the present study suggest that CNP has anticancer activity. Further, the CNP+CDDP treatment has more promising anticancer activity as compared with CNP or CDDP alone treatment, probably due to the synergistic antiproliferative and anti-inflammatory activities of CNP and CDDP.


Assuntos
Croton , Neoplasias Cutâneas , Animais , Camundongos , Óleo de Cróton/efeitos adversos , Peptídeo Natriurético Tipo C/efeitos adversos , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antracenos , Peso Corporal
12.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511200

RESUMO

Patients with comorbidities of obesity and diabetes are recognized to be at high risk of breast cancer development and face worse breast cancer outcomes. Though several reports showed the reinforced link between obesity, diabetes, and prediabetes with breast cancer, the underlying molecular mechanisms are still unknown. The present study aimed to investigate the underlying molecular link between increased risks of breast cancer due to coincident diabetes or obesity using a spontaneous obese rat model with impaired glucose tolerance (WNIN/GR-Ob rat). A single dose of solubilized DMBA suspension (40 mg/kg body weight) was orally administered to the animals at the age of 60 days to induce breast tumors. The tumor incidence, latency period, tumor frequency, and tumor volume were measured. Histology, immunohistochemistry, and immunoblotting were performed to evaluate the tumor morphology and expression levels of signal molecules. The development of mammary tumors in GR-Ob rats was characterized by early onset and shorter latency periods compared to control lean rats. While 62% of obese rats developed breast tumors, tumor development in lean rats was only 21%. Overexpression of ER, PR, Ki67, and p53 markers was observed in tumor tissues of obese rats in comparison with lean rats. The levels of the hallmarks of cell proliferation and angiogenesis involved in IGF-1/PI3K/Akt/GSK3ß/ß-catenin signaling pathway molecules were upregulated in obese rat breast tumors compared to lean rats. Furthermore, obesity with prediabetes is associated with changes in IGF-1 signaling and acts on PI3K/Akt/GSK3ß/ß-catenin signaling, which results in rapid cell proliferation and development of breast tumors in obese rats than the lean rats. These results indicate that tumor onset and development were faster in spontaneous obese rat models with impaired glucose tolerance than in their lean counterparts.


Assuntos
Intolerância à Glucose , Neoplasias , Estado Pré-Diabético , Ratos , Animais , Intolerância à Glucose/complicações , Glicogênio Sintase Quinase 3 beta , Fator de Crescimento Insulin-Like I , beta Catenina , Estado Pré-Diabético/complicações , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Obesidade/metabolismo , Neoplasias/complicações
13.
Toxicol Appl Pharmacol ; 434: 115822, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896434

RESUMO

Our recent investigation directed to synthesize a novel ruthenium-phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo. Ruthenium-phloretin complex was synthesized and characterized by different spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human carcinoma cell lines and finally in an in vivo model of mammary carcinogenesis induced by DMBA in rats. Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the trail of intrinsic apoptosis facilitated through Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways. Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the anti-angiogenic pathway.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Malus/química , Floretina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Compostos de Rutênio/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/induzido quimicamente , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Neoplasias Experimentais , Floretina/química , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos de Rutênio/química , Compostos de Rutênio/toxicidade , Serina-Treonina Quinases TOR , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Crit Rev Food Sci Nutr ; 62(5): 1222-1229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33107328

RESUMO

Breast cancer (BC) is a foremost type of cancer in women globally with an increased mortality rate in developing countries. Information regarding hereditary factors, lifestyle, work environment, food habits, and personal history could be useful in diagnosing breast cancer. Among such food habits, the reuse of edible oil for preparing food is a common practice in any developing country. The repeated heating of oils enhances the oxidative degradation of oil to produce polyaromatic hydrocarbons (PAH) which could disrupt the redox balance and generate reactive oxygen species. These reactive toxic intermediates can lead to BRCA1 mutations that are responsible for breast cancer. Mutations in DNA are the main cause for the conversion of proto-oncogenes into oncogenes which leads to change in expression and an increase in cell proliferation wherein a normal cell gets transformed into a malignant neoplastic cell. This review summarizes the possible mechanism involved in the induction of breast cancer due to repeated heating of edible.


Assuntos
Neoplasias da Mama , Óleos de Plantas , Proteína BRCA1/genética , Neoplasias da Mama/genética , Feminino , Humanos , Mutação , Espécies Reativas de Oxigênio
15.
J Biochem Mol Toxicol ; 36(6): e23029, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35243731

RESUMO

The objective of this study is to examine the chemopreventive effects of Nerolidol (NER) on hamster buccal pouch carcinogenesis (HBC) induced by 7,12-dimethylbenz(a)anthracene (DMBA) in male golden Syrian hamsters. In this study, oral squamous cell carcinoma was developed in the buccal pouch of an oral painted hamster with 0.5% DMBA in liquid paraffin three times weekly for 12 weeks. To assess DMBA-induced hamster buccal tissue carcinogenesis, biochemical endpoints such as Phase I and II detoxification enzymes, antioxidants, lipid peroxidation (LPO) by-products, and renal function markers, as well as histopathological examinations, were used. Furthermore, the immunohistochemical studies of interleukin-6 were investigated to find the inflammatory link in the HBC carcinogenesis. In our results, DMBA alone exposed hamsters showed 100% tumor growth, altered levels of antioxidants, detoxification agents, LPO, and renal function identifiers as compared to the control hamsters. The outcome in  present biochemical, histopathological, and immunohistochemistry studies has been found a reverse in NER-treated hamsters against the tumor. This study concluded that NER modulated the biochemical profiles (antioxidants, detoxification, LPO, and renal function markers) and inhibited tumor development in DMBA induced oral carcinogenesis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Antioxidantes/efeitos adversos , Carcinogênese , Carcinógenos/toxicidade , Carcinoma de Células Escamosas/patologia , Cricetinae , Masculino , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/prevenção & controle , Sesquiterpenos
16.
Cell Biochem Funct ; 40(2): 127-137, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35014047

RESUMO

Type 2 diabetes mellitus (T2DM) is linked to an increased risk of breast cancer. We aimed to investigate how T2DM-associated characteristics (high levels of glucose, insulin, leptin, inflammatory mediators and oxidative stress) influence breast cancer carcinogenesis, in DMBA-treated (MCF-12ADMBA ) and non-treated breast epithelial (MCF-12A) cell lines. Insulin (50 nM) promotes cell proliferation, 3 H-DG uptake and lactic acid production in both cell lines. The stimulatory effects of insulin upon cell proliferation and 3 H-DG uptake were hampered by rapamycin, LY294001 and BAY-876, in both cell lines. In conclusion, hyperinsulinemia, one important characteristic of T2DM, contributes to the initiation of breast cancer by a PI3K- and mTOR-dependent mechanism involving increased GLUT1-mediated glucose uptake. SIGNIFICANCE: The pro-proliferative effect of insulin in human breast epithelial DMBA-transformed and non-transformed cell lines is PI3K-, mTOR- and GLUT1-dependent.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Transportador de Glucose Tipo 1/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
17.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164019

RESUMO

Breast cancer is a major cause of death in women worldwide. In this study, 60 female rats were classified into 6 groups; negative control, α-aminophosphonates, arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one, DMBA, DMBA & α-aminophosphonates, and DMBA & arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. New α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one were synthesized and elucidated by different spectroscopic and elemental analysis. Histopathological examination showed marked proliferation of cancer cells in the DMBA group. Treatment with α-aminophosphonates mainly decreased tumor mass. Bcl2 expression increased in DMBA-administered rats and then declined in the treated groups, mostly with α-aminophosphonates. The level of CA15-3 markedly declined in DMBA groups treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. Gene expression of GST-P, PCNA, PDK, and PIK3CA decreased in the DMBA group treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one, whereas PIK3R1 and BAX increased in the DMBA group treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. The molecular docking postulated that the investigated compounds can inhibt the Thymidylate synthase TM due to high hydrophobicity charachter.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Timidilato Sintase/antagonistas & inibidores , 9,10-Dimetil-1,2-benzantraceno , Animais , Antineoplásicos/farmacologia , Células CACO-2 , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Feminino , Peixes , Humanos , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Organofosfonatos/síntese química , Organofosfonatos/química , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico , Extratos Vegetais , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Ratos , Timidilato Sintase/química
18.
Environ Toxicol ; 36(5): 861-873, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33393727

RESUMO

Identification of novel natural treatment to combat cancer is a current need. This study was aimed at assessing the anticancer effects of ethanol-extracted Cameroonian propolis (EEP). The antitumor effect of EPP was evaluated in vitro by measuring; cell viability, cell cycle, cell death mechanism, cell migration/invasion, reactive oxygen species (ROS), mitochondrial potential (ΔΨm), caspase activity, and apoptosis-regulating proteins (Bcl-2 and Bcl-XL) in cell lines. In vivo, the effect of EEP against 7,12 dimethylbenz(a)anthracene (DMBA)-induced breast tumorigenesis in rats was assessed. EEP was found to induce cytotoxicity against ER negative MDA-MB-231 breast cancer cells by activating apoptosis through ROS-mediated mitochondrial pathway. The extract equally triggered caspase-3 and caspase-9, increment of ROS level, disruption of ΔΨm and down-regulation of Bcl-XL and Bcl-2 proteins. Besides, EPP prevented migration and invasion activities by inhibiting MMP-2 activity. At all doses it prevented breast tumor incidence (20% in EEP 150 mg/kg vs 70% in DMBA) as well as tumor burden. Tumor sections from EEP-treated rats showed middle proliferation of mammary ducts with weak inflammatory responses. In summary, Cameroonian propolis exhibited antimammary tumor effects via the intrinsic pathway of apoptosis.


Assuntos
Neoplasias , Própole , Animais , Apoptose , Camarões , Linhagem Celular Tumoral , Proliferação de Células , Etanol/toxicidade , Potencial da Membrana Mitocondrial , Extratos Vegetais , Própole/farmacologia , Ratos , Espécies Reativas de Oxigênio
19.
Environ Toxicol ; 36(4): 460-471, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33156559

RESUMO

BACKGROUND: Neferine (NEF) is nontoxic, bisbenzylisoquinoline alkaloid is derived from the seed embryo of lotus, a familiar medicinal plant. Although several mechanisms have been planned, an evident antitumor action pathway of NEF on the oral tumor is still not known. In the current study, we aimed at investigating the protecting effect of NEF against experimental oral carcinoma and clarify its possible mechanism through the induction of apoptosis, proliferation, and inflammatory signaling pathways. METHODS: The experimental hamsters were divided into four groups (I-IV) containing six hamsters each. The group I was control group, group II and III hamsters treated with 7,12-dimethylbenz(a)anthracene (DMBA) (0.5%) alone, thrice in a week for 10 weeks, and group III and IV hamsters received oral supplementation of NEF at a concentration of 15 mg/kg bw. All the hamsters were sacrificed after 16 weeks. RESULTS: Our results revealed that DMBA treated hamsters exhibited 100% oral tumor cell formation with high-tumor incidence (TI), tumor number (TN), tumor volume (TV), decreased levels of antioxidants, increased status of lipid peroxidation (LPO), and modulated the activities of liver marker agents as well as NF-kB, cell proliferation (PCNA), and p53 proteins. NEF supplementation in DMBA treated hamsters, resulted in delayed lesion synthesis, and brought back the levels of the biochemical parameters. In addition, immunostaining of NF-kB, PCNA, and p53 showed that they were inhibited by NEF. CONCLUSION: Thus, NEF might be considered a better chemopreventive drug in an experimental model of home-based primary care (HBPC). More research is necessary to study other pathways implicated in oral carcinomas and their modulation by NEF.


Assuntos
Anticarcinógenos/farmacologia , Benzilisoquinolinas/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinoma de Células Escamosas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Bucais/prevenção & controle , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Anticarcinógenos/administração & dosagem , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/administração & dosagem , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Cricetinae , Medicamentos de Ervas Chinesas/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Neoplasias Bucais/patologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
20.
Environ Toxicol ; 36(3): 339-351, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33068063

RESUMO

Oral cancer is a multifactorial cancer that affects millions of peoples worldwide. The current exploration aimed to evaluate the mechanisms that thymoquinone nanoencapsulated carrier and its effects on 7,12-Dimethylbenz[a]anthracene (DMBA) stimulated hamster buccal pouch cancer in Syrian hamster model. Nanocarrier was characterized by SEM, TEM, FTIR analysis. The incidence of tumor, and biochemicals makers was studied through standard methods. The mRNA expression level of inflammatory markers NF-κBp50, NF-κBp65, and PI3K/AKT/mTOR markers in the buccal tissues of control and experimental animals were investigated through RT-PCR analysis. In thymoquinone (TQ) loaded calcium alginate and polyvinyl alcohol carrier (TQ/Ca-alg-PVA) no squamous cell carcinogenesis developed and others moderate dysplasia revealed differentiated form of hyperplasia and keratosis. In biochemical analyses with DMBA + TQ/Ca-alg-PVA (20 mg/kg bw) orally administered hamsters showed restored the antioxidants, detoxification, xenobiotic metabolising enzymes in DMBA induced plasma and oral tissues of hamsters. Further, mRNA expression level of NF-κBp50/p65 and PI3K/AKT/mTOR were upregulated in the DMBA alone painted hamster. In contrast, these expressions were down regulated in orally TQ/Ca-alg-PVA treated experimental animals. This ability more eligible to deregulate the inflammatory and PI3K/AKT/mTOR signaling pathway that proved it suppresses anti-invasion/metastasis activity during hamster buccal pouch carcinogenesis. From this study, we recommended that TQ/Ca-alg-PVA has documented as effective chemopreventive agents, in further many molecular machineries need to study.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Benzoquinonas/farmacologia , Álcool de Polivinil/farmacologia , 9,10-Dimetil-1,2-benzantraceno/efeitos adversos , Alginatos/efeitos adversos , Animais , Antracenos/efeitos adversos , Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinógenos , Carcinoma de Células Escamosas/patologia , Bochecha/patologia , Cricetinae , Regulação para Baixo/efeitos dos fármacos , Masculino , Mesocricetus , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Álcool de Polivinil/metabolismo , Álcool de Polivinil/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA