Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Small ; 20(37): e2401315, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38747008

RESUMO

Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.

2.
BMC Microbiol ; 24(1): 306, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152378

RESUMO

BACKGROUND: Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS: The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION: The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.


Assuntos
Campylobacter jejuni , Galinhas , Transcriptoma , Tricotecenos , Tricotecenos/metabolismo , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/metabolismo , Animais , Transcriptoma/efeitos dos fármacos , Galinhas/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Ração Animal/microbiologia
3.
Anal Biochem ; 692: 115572, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38777290

RESUMO

Deoxynivalenol (DON) is a common mycotoxin in food that mainly pollutes grain crops and feeds, such as barley, wheat and corn. DON has caused widespread concern in the field of food and feed safety. In this study, a colorimetric immunoassay was proposed based on the aggregation of gold nanoparticles (AuNPs) due to the decomposition of Mn2+ from gold-coated manganese dioxide (AuNP@MnO2) nanosheets. In this study, 2-(dihydrogen phosphate)-l-ascorbic acid (AAP) was hydrolyzed by alkaline phosphatase (ALP) and converted to ascorbic acid (AA). Then, AuNP@MnO2 was reduced to Mn2+ and AuNPs aggregation occurred. Using the unique optical characteristics of AuNPs and AuNP@MnO2, visible color changes realized simple detection of DON with high sensitivity and portability. With increasing DON content, the color changed more obviously. To quantitatively detect DON, pictures can be taken and the blue value can be read by a smartphone. The detection limit (Ic10) of this method was 0.098 ng mL-1, which was 326 times higher than that of traditional competitive ELISA, and the detection range was 0.177-6.073 ng mL-1. This method exhibited high specificity with no cross-reaction in other structural analogs. The average recovery rate of DON in corn flour samples was 89.1 %-110.2 %, demonstrating the high accuracy and stability of this assay in actual sample detection. Therefore, the colorimetric immunoassay can be used for DON-related food safety monitoring.


Assuntos
Colorimetria , Ouro , Manganês , Nanopartículas Metálicas , Smartphone , Tricotecenos , Colorimetria/métodos , Ouro/química , Tricotecenos/análise , Tricotecenos/química , Nanopartículas Metálicas/química , Imunoensaio/métodos , Manganês/química , Compostos de Manganês/química , Contaminação de Alimentos/análise , Óxidos/química , Limite de Detecção
4.
Bioorg Chem ; 142: 106928, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922768

RESUMO

A systematical investigation on the chemical constituents of the flowers of Rhododendron molle (Ericaceae) led to the isolation and characterization of thirty-eight highly functionalized grayanane diterpenoids (1-38), including twelve novel analogues molleblossomins A-L (1-12). Their structures were elucidated by comprehensive methods, including 1D and 2D NMR analysis, calculated ECD, 13C NMR calculations with DP4+ probability analysis, and single crystal X-ray diffraction. Molleblossomins A (1), B (2), and E (5) are the first representatives of 2ß,3ß:9ß,10ß-diepoxygrayanane, 2,3-epoxygrayan-9(11)-ene, and 5,9-epoxygrayan-1(10),2(3)-diene diterpenoids, respectively. Molleblossomins G (7) and H (8) represent the first examples of 1,3-dioxolane-grayanane conjugates furnished with the acetaldehyde and 4-hydroxylbenzylidene acetal moieties, respectively. All grayanane diterpenoids 1-38 were screened for their analgesic activities in the acetic acid-induced writhing model, and all of them exhibited significant analgesic activities. Diterpenoids 6, 13, 14, 17, 20, and 25 showed more potent analgesic effects than morphine at a lower dose of 0.2 mg/kg, with the inhibition rates of 51.4%, 68.2%, 94.1%, 66.9%, 97.7%, and 60.0%, respectively. More importantly, even at the lowest dose of 0.04 mg/kg, rhodomollein X (14), rhodojaponin VI (20), and rhodojaponin VII (22) still significantly reduced the number of writhes in the acetic acid-induced pain model with the percentages of 61.7%, 85.8%, and 64.6%, respectively. The structure-activity relationship was summarized and might provide some hints to design novel analgesics based on the functionalized grayanane diterpenoids.


Assuntos
Diterpenos , Rhododendron , Rhododendron/química , Estrutura Molecular , Flores/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Diterpenos/química , Ácido Acético/análise
5.
Antonie Van Leeuwenhoek ; 117(1): 73, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676821

RESUMO

The deoxynivalenol (DON)-degrading bacterium JB1-3-2 T was isolated from a rhizosphere soil sample of cucumber collected from a greenhouse located in Zhenjiang, Eastern China. The JB1-3-2 T strain is a Gram-stain-positive, nonmotile and round actinomycete. Growth was observed at temperatures between 15 and 40 ℃ (optimum, 35 ℃), in the presence of 15% (w/v) NaCl (optimum, 3%), and at pH 3 and 11 (optimum, 7). The major cellular fatty acids identified were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Genome sequencing revealed a genome size of 4.11 Mb and a DNA G + C content of 72.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the JB1-3-2 T strain was most closely related to type strains of the Oerskovia species, with the highest sequence similarity to Oerskovia turbata NRRL B-8019 T (98.2%), and shared 98.1% sequence identity with other valid type strains of this genus. Digital DNA‒DNA hybridization (dDDH) and average nucleotide identity (ANI) showed 21.8-22.2% and 77.2-77.3% relatedness, respectively, between JB1-3-2 T and type strains of the genus Oerskovia. Based on genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, Oerskovia flava, a novel species in the genus Oerskovia, was proposed, and the type strain was JB1-3-2 T (= CGMCC 1.18555 T = JCM 35248 T). Additionally, this novel strain has a DON degradation ability that other species in the genus Oerskovia do not possess, and glutathione-S-transferase was speculated to be the key enzyme for strain JB1-3-2 T to degrade DON.


Assuntos
Cucumis sativus , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Tricotecenos , Cucumis sativus/microbiologia , Tricotecenos/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , China , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Genoma Bacteriano
6.
J Endocrinol Invest ; 47(8): 1953-1969, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38386265

RESUMO

BACKGROUND: Effective treatment for patients with advanced thyroid cancer is lacking. Metabolism reprogramming is required for cancer to undergo oncogenic transformation and rapid tumorigenic growth. Glutamine is frequently used by cancer cells for active bioenergetic and biosynthetic needs. This study aims to investigate whether targeting glutamine metabolism is a promising therapeutic strategy for thyroid cancer. METHODS: The expression of glutaminase (GLS) and glutamate dehydrogenase (GDH) in thyroid cancer tissues was evaluated by immunohistochemistry, and glutamine metabolism-related genes were assessed using real time-qPCR and western blotting. The effects of glutamine metabolism inhibitor 6-diazo-5-oxo-l-norleucine (DON) on thyroid cancer cells were determined by CCK-8, clone formation assay, Edu incorporation assay, flow cytometry, and Transwell assay. The mechanistic study was performed by real time-qPCR, western blotting, Seahorse assay, and gas chromatography-mass spectrometer assay. The effect of DON prodrug (JHU-083) on thyroid cancer in vivo was assessed using xenograft tumor models in BALB/c nude mice. RESULTS: GLS and GDH were over-expressed in thyroid cancer tissues, and GLS expression was positively associated with lymph-node metastasis and TNM stage. The growth of thyroid cancer cells was significantly inhibited when cultured in glutamine-free medium. Targeting glutamine metabolism with DON inhibited the proliferation of thyroid cancer cells. DON treatment did not promote apoptosis, but increased the proportion of cells in the S phase, accompanied by the decreased expression of cyclin-dependent kinase 2 and cyclin A. DON treatment also significantly inhibited the migration and invasion of thyroid cancer cells by reducing the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Non-essential amino acids, including proline, alanine, aspartate, asparagine, and glycine, were reduced in thyroid cancer cells treated with DON, which could explain the decrease of proteins involved in migration, invasion, and cell cycle. The efficacy and safety of DON prodrug (JHU-083) for thyroid cancer treatment were verified in a mouse model. In addition to suppressing the proliferation and metastasis potential of thyroid cancer in vivo, enhanced innate immune response was also observed in JHU-083-treated xenograft tumors as a result of decreased expression of cluster of differentiation 47 and programmed cell death ligand 1. CONCLUSIONS: Thyroid cancer exhibited enhanced glutamine metabolism, as evidenced by the glutamine dependence of thyroid cancer cells and high expression of multiple glutamine metabolism-related genes. Targeting glutamine metabolism with DON prodrug could be a promising therapeutic option for advanced thyroid cancer.


Assuntos
Proliferação de Células , Diazo-Oxo-Norleucina , Glutaminase , Glutamina , Neoplasias da Glândula Tireoide , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Glutamina/metabolismo , Animais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Camundongos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Proliferação de Células/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Feminino , Camundongos Nus , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
7.
Bioethics ; 38(5): 419-424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652592

RESUMO

Parthenogenesis is a form of asexual reproduction in which a gamete (ovum or sperm) develops without being fertilized. Tomer Jordi Chaffer uses parthenogenesis to challenge Don Marquis' future-like-ours (FLO) argument against abortion. According to Marquis, (1) what makes it morally wrong to kill us is that it would deprive us of a possible future that we might come to value-a future "like ours" (FLO) and (2) human fetuses are numerically identical to any adult human organism they may develop into, and thus have a FLO. Chaffer contends that if human ova are capable of parthenogenesis, then they would have a FLO, which contraception may deprive them of, but contends this is absurd. Bruce P. Blackshaw challenges Chaffer, contending sexually fertilized embryos are not identical to unfertilized ovum, but this would yield a more absurd implication, that fertilization deprives an ovum of a FLO! Here I show Marquis' account of identity rules out both Chaffer's and Blackshaw's accounts.


Assuntos
Partenogênese , Humanos , Feminino , Gravidez , Masculino , Aborto Induzido/ética , Valor da Vida , Fertilização , Óvulo , Feto
8.
Int J Phytoremediation ; 26(4): 569-578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37684742

RESUMO

To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


The water extract of Fagopyrum dibotrys (D. Don) Hara straw promoted the selenium (Se) uptake in peach seedlings under selenium-contaminated soil. The concentration of F. dibotrys straw extract showed a quadratic polynomial regression relationship with the total root and shoot Se. Furthermore, chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se. This study shows that water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


Assuntos
Fagopyrum , Prunus persica , Selênio , Biodegradação Ambiental , Clorofila A/análise , Fagopyrum/metabolismo , Prunus persica/metabolismo , Plântula/química , Selênio/metabolismo , Solo , Água/análise
9.
Phytochem Anal ; 35(5): 1112-1122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38500381

RESUMO

INTRODUCTION: Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear. OBJECTIVES: This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS). METHODS: Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay. RESULTS: Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and ß-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing. CONCLUSION: A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.


Assuntos
Anticoagulantes , Simulação de Acoplamento Molecular , Polygonum , Trombina , Ultrafiltração , Peixe-Zebra , Polygonum/química , Cromatografia Líquida de Alta Pressão/métodos , Anticoagulantes/farmacologia , Anticoagulantes/química , Ultrafiltração/métodos , Animais , Trombina/metabolismo , Espectrometria de Massas/métodos , Ligantes
10.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257418

RESUMO

Fusarium graminearum and F. culmorum are considered some of the most dangerous pathogens of plant diseases. They are also considerably dangerous to humans as they contaminate stored grain, causing a reduction in yield and deterioration in grain quality by producing mycotoxins. Detecting Fusarium fungi is possible using various diagnostic methods. In the manuscript, qPCR tests were used to determine the level of wheat grain spoilage by estimating the amount of DNA present. High-performance liquid chromatography was performed to determine the concentration of DON and ZEA mycotoxins produced by the fungi. GC-MS analysis was used to identify volatile organic components produced by two studied species of Fusarium. A custom-made, low-cost, electronic nose was used for measurements of three categories of samples, and Random Forests machine learning models were trained for classification between healthy and infected samples. A detection performance with recall in the range of 88-94%, precision in the range of 90-96%, and accuracy in the range of 85-93% was achieved for various models. Two methods of data collection during electronic nose measurements were tested and compared: sensor response to immersion in the odor and response to sensor temperature modulation. An improvement in the detection performance was achieved when the temperature modulation profile with short rectangular steps of heater voltage change was applied.


Assuntos
Fusarium , Micotoxinas , Humanos , Triticum , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Fungos , Grão Comestível
11.
Nano Lett ; 23(12): 5562-5572, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289965

RESUMO

Macrophages are a type of immune cell that helps eliminate pathogens and diseased cells. Recent research has shown that macrophages can sense mechanical cues from potential targets to perform effective phagocytosis, but the mechanisms behind it remain unclear. In this study, we used DNA-based tension probes to study the role of integrin-mediated forces in FcγR-mediated phagocytosis. The results showed that when the phagocytic receptor FcγR is activated, the force-bearing integrins create a "mechanical barrier" that physically excludes the phosphatase CD45 and facilitates phagocytosis. However, if the integrin-mediated forces are physically restricted at lower levels or if the macrophage is on a soft matrix, CD45 exclusion is significantly reduced. Moreover, CD47-SIRPα "don't eat me" signaling can reduce CD45 segregation by inhibiting the mechanical stability of the integrin barrier. These findings demonstrate how macrophages use molecular forces to identify physical properties and combine them with biochemical signals from phagocytic receptors to guide phagocytosis.


Assuntos
Integrinas , Receptores de IgG , Integrinas/metabolismo , Fagocitose , Macrófagos/metabolismo , Transdução de Sinais , Proteínas de Transporte
12.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273480

RESUMO

The quality of food is one of the emergent points worldwide. Many microorganisms produce toxins that are harmful for human and animal health. In particular, mycotoxins from Fusarium fungi are strictly controlled in cereals. Simple and robust biosensors are necessary for 'in field' control of the crops and processed products. Nucleic acid-based sensors (aptasensors) offer a new era of point-of-care devices with excellent stability and limits of detection for a variety of analytes. Here we report the development of a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the detection of T-2 and deoxynivalenol in wheat grains. The aptasensor was able to detect as low as 0.17% of pathogen fungi in the wheat grains. The portable devices, inexpensive SERS substrate, and short analysis time encourage further implementation of the aptasensors outside of highly equipped laboratories.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Análise Espectral Raman , Tricotecenos , Triticum , Análise Espectral Raman/métodos , Tricotecenos/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Triticum/microbiologia , Triticum/química , Toxina T-2/análise , Fusarium , Contaminação de Alimentos/análise
13.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39337277

RESUMO

The mycotoxin deoxynivalenol (DON) is frequently present in cereals at low levels, resulting in its occurrence in food and feed. DON has been proven to alter the immune response and induce inflammation in all species, with pigs exhibiting heightened sensitivity and exposure. However, no study has yet evaluated the effects of exposure to DON at the recommended levels in pig feed. In two separate trials, piglets were subjected to control feed or feed contaminated with a low level of purified DON (0.83 mg/kg feed in trial 1 and 0.85 mg/kg feed in trial 2) for either three weeks (trial 1) or two weeks (trial 2). Additionally, a group of animals exposed to 2.85 mg/kg feed of DON was included as a positive control in Trial 1. The impact of DON on porcine tissues (intestine, liver, and spleen) was evaluated through histological and qPCR analyses of immune-related genes. Additionally, biochemical analyses and acute-phase proteins were examined in plasma samples. Lesions were identified in the intestine (jejunum and ileum), the liver, and the spleen of pigs receiving diets contaminated with low and high concentrations of DON. The low level of DON also resulted in impaired expression of genes associated with intestinal barrier integrity, intestinal immune responses, and liver function. In conclusion, the results of the two trials demonstrate the impact of DON exposure even at doses below the recommended level of 0.9 mg/kg feed set by the European Union. This suggests that the current recommended level should be reconsidered to ensure the optimal health and well-being of pigs.


Assuntos
Ração Animal , União Europeia , Inflamação , Fígado , Tricotecenos , Tricotecenos/toxicidade , Animais , Suínos , Inflamação/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Contaminação de Alimentos/análise , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia
14.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279341

RESUMO

Universal stress proteins (USPs) play an important regulatory role in responses to abiotic stress. Most of the research related to USPs so far has been conducted on plant models such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.). The potato (Solanum tuberosum L.) is one of the four major food crops in the world. The potato is susceptible to mechanical damage and infection by pathogenic fungi during transport and storage. Deoxynivalenol (DON) released by Fusarium can seriously degrade the quality of potatoes. As a result, it is of great significance to study the expression pattern of the potato StUSP gene family under abiotic stress conditions. In this study, a total of 108 USP genes were identified from the genome of the Atlantic potato, divided into four subgroups. Based on their genetic structure, the physical and chemical properties of their proteins and other aspects of their biological characteristics are comprehensively analyzed. Collinear analysis showed that the homologous genes of StUSPs and four other representative species (Solanum lycopersicum, Arabidopsis, Oryza sativa L., and Nicotiana attenuata) were highly conserved. The cis-regulatory elements of the StUSPs promoter are involved in plant hormones, environmental stress, mechanical damage, and light response. RNA-seq analysis showed that there are differences in the expression patterns of members of each subgroup under different abiotic stresses. A Weighted Gene Coexpression Network Analysis (WGCNA) of the central gene showed that the differential coexpression gene is mainly involved in the plant-pathogen response process, plant hormone signal transduction, and the biosynthesis process of secondary metabolites. Through qRT-PCR analysis, it was confirmed that StUSP13, StUSP14, StUSP15, and StUSP41 may be important candidate genes involved in the response to adversity stress in potatoes. The results of this study provide a basis for further research on the functional analysis of StUSPs in the response of potatoes to adversity stress.


Assuntos
Arabidopsis , Solanum tuberosum , Tricotecenos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Choque Térmico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255951

RESUMO

T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.


Assuntos
Condrócitos , Toxina T-2 , Tricotecenos , Humanos , Toxina T-2/toxicidade , Proteínas de Sinalização YAP , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal
16.
Molecules ; 29(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39274982

RESUMO

With the increasing global incidence and mortality rates of cancer, the development of novel anti-tumor drugs has become particularly urgent. Scutellaria barbata D. Don, a perennial herb belonging to the genus Scutellaria in the family Lamiaceae, has aroused extensive attention for its medicinal value in recent years. This article presents an exhaustive review of the flavonoid, diterpene, and other chemical constituents harbored within Scutellaria barbata, delving into the intricate mechanisms by which these compounds orchestrate their anti-tumor effects via diverse biological pathways. Remarkably, these compounds distinguish themselves through their capability to regulate cellular signaling, inhibit cancer cell proliferation, trigger apoptosis, disrupt angiogenesis, and bolster immune responses. These anti-tumor effects are achieved through strategic modulation of pivotal signaling cascades, particularly the PI3K/Akt/mTOR, MAPK, and NFκB pathways. In addition, this article also summarizes the clinical applications of Scutellaria barbata in tumor treatment, especially its potential in alleviating the side effects of radiotherapy and chemotherapy and improving patients' quality of life. In conclusion, this review comprehensively summarizes and analyzes the chemical constituents, anti-tumor mechanisms, and clinical applications of Scutellaria barbata, with the aim of systematically reviewing the existing research results and exploring potential future research directions.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias , Extratos Vegetais , Scutellaria , Scutellaria/química , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos
17.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731582

RESUMO

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Assuntos
Antibacterianos , Biofilmes , Catequina , Combretum , Testes de Sensibilidade Microbiana , Extratos Vegetais , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Catequina/farmacologia , Catequina/química , Combretum/química , Folhas de Planta/química , Açúcares , Humanos
18.
J Cell Mol Med ; 27(20): 3053-3064, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654003

RESUMO

Mantle-cell lymphoma (MCL) is a B-cell non-Hodgkin Lymphoma (NHL) with a poor prognosis, at high risk of relapse after conventional treatment. MCL-associated tumour microenvironment (TME) is characterized by M2-like tumour-associated macrophages (TAMs), able to interact with cancer cells, providing tumour survival and resistance to immuno-chemotherapy. Likewise, monocyte-derived nurse-like cells (NLCs) present M2-like profile and provide proliferation signals to chronic lymphocytic leukaemia (CLL), a B-cell malignancy sharing with MCL some biological and phenotypic features. Antibodies against TAMs targeted CD47, a 'don't eat me' signal (DEMs) able to quench phagocytosis by TAMs within TME, with clinical effectiveness when combined with Rituximab in pretreated NHL. Recently, CD24 was found as valid DEMs in solid cancer. Since CD24 is expressed during B-cell differentiation, we investigated and identified consistent CD24 in MCL, CLL and primary human samples. Phagocytosis increased when M2-like macrophages were co-cultured with cancer cells, particularly in the case of paired DEMs blockade (i.e. anti-CD24 + anti-CD47) combined with Rituximab. Similarly, unstimulated CLL patients-derived NLCs provided increased phagocytosis when DEMs blockade occurred. Since high levels of CD24 were associated with worse survival in both MCL and CLL, anti-CD24-induced phagocytosis could be considered for future clinical use, particularly in association with other agents such as Rituximab.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma de Célula do Manto , Adulto , Humanos , Rituximab/farmacologia , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Antígeno CD47 , Recidiva Local de Neoplasia , Fagocitose , Microambiente Tumoral , Antígeno CD24
19.
EMBO Rep ; 22(6): e52564, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34041845

RESUMO

Timely removal of dying or pathogenic cells by phagocytes is essential to maintaining host homeostasis. Phagocytes execute the clearance process with high fidelity while sparing healthy neighboring cells, and this process is at least partially regulated by the balance of "eat-me" and "don't-eat-me" signals expressed on the surface of host cells. Upon contact, eat-me signals activate "pro-phagocytic" receptors expressed on the phagocyte membrane and signal to promote phagocytosis. Conversely, don't-eat-me signals engage "anti-phagocytic" receptors to suppress phagocytosis. We review the current knowledge of don't-eat-me signaling in normal physiology and disease contexts where aberrant don't-eat-me signaling contributes to pathology.


Assuntos
Fenômenos Biológicos , Fagocitose , Apoptose , Fagócitos , Transdução de Sinais
20.
Mol Biol Rep ; 50(4): 3885-3901, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826681

RESUMO

PURPOSE: Wheat is an important cereal crop that is cultivated in different parts of the world. The biotic stresses are the major concerns in wheat-growing nations and are responsible for production loss globally. The change in climate dynamics makes the pathogen more virulent in foothills and tropical regions. There is growing concern about FHB in major wheat-growing nations, and until now, there has been no known potential source of resistance identified in wheat germplasm. The plant pathogen interaction activates the cascade of pathways, genes, TFs, and resistance genes. Pathogenesis-related genes' role in disease resistance is functionally validated in different plant systems. Similarly, Genomewide association Studies (GWAS) and Genomic selection (GS) are promising tools and have led to the discovery of resistance genes, genomic regions, and novel markers. Fusarium graminearum produces deoxynivalenol (DON) mycotoxins in wheat kernels, affecting wheat productivity globally. Modern technology now allows for detecting and managing DON toxin to reduce the risk to humans and animals. This review offers a comprehensive overview of the roles played by GWAS and Genomic selection (GS) in the identification of new genes, genetic variants, molecular markers and DON toxin management strategies. METHODS: The review offers a comprehensive and in-depth analysis of the function of Fusarium graminearum virulence factors in Durum wheat. The role of GWAS and GS for Fusarium Head Blight (FHB) resistance has been well described. This paper provides a comprehensive description of the various statistical models that are used in GWAS and GS. In this review, we look at how different detection methods have been used to analyze and manage DON toxin exposure. RESULTS: This review highlights the role of virulent genes in Fusarium disease establishment. The role of genome-based selection offers the identification of novel QTLs in resistant wheat germplasm. The role of GWAS and GS selection has minimized the use of population development through breeding technology. Here, we also emphasized the function of recent technological developments in minimizing the impact of DON toxins and their implications for food safety.


Assuntos
Fusarium , Triticum , Humanos , Triticum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA