Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Biol ; 21(1): 249, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940940

RESUMO

BACKGROUND: Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS: Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS: Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS: Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triptofano/genética , Triptofano/metabolismo , Triptofano/farmacologia , Fotossíntese , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190359, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862804

RESUMO

The Barents Sea is experiencing long-term climate-driven changes, e.g. modification in oceanographic conditions and extensive sea ice loss, which can lead to large, yet unquantified disruptions to ecosystem functioning. This key region hosts a large fraction of Arctic primary productivity. However, processes governing benthic and pelagic coupling are not mechanistically understood, limiting our ability to predict the impacts of future perturbations. We combine field observations with a reaction-transport model approach to quantify organic matter (OM) processing and disentangle its drivers. Sedimentary OM reactivity patterns show no gradients relative to sea ice extent, being mostly driven by seafloor spatial heterogeneity. Burial of high reactivity, marine-derived OM is evident at sites influenced by Atlantic Water (AW), whereas low reactivity material is linked to terrestrial inputs on the central shelf. Degradation rates are mainly driven by aerobic respiration (40-75%), being greater at sites where highly reactive material is buried. Similarly, ammonium and phosphate fluxes are greater at those sites. The present-day AW-dominated shelf might represent the future scenario for the entire Barents Sea. Our results represent a baseline systematic understanding of seafloor geochemistry, allowing us to anticipate changes that could be imposed on the pan-Arctic in the future if climate-driven perturbations persist. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Mudança Climática , Ecossistema , Organismos Aquáticos/metabolismo , Regiões Árticas , Simulação por Computador , Sedimentos Geológicos/química , Camada de Gelo , Modelos Biológicos , Compostos Orgânicos/metabolismo , Água do Mar/química
3.
J Environ Sci Health B ; 55(2): 135-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31554464

RESUMO

We investigated the anaerobic degradation of tetracycline antibiotics (tetracycline [TC], oxytetracycline [OTC] and chlortetracycline [CTC]) in swine, cattle, and poultry manures. The manures were anaerobically digested inside polyvinyl chloride batch reactors for 64 days at room temperature. The degradation rate constants and half-lives of the parent tetracyclines were determined following first-order kinetics. For CTC the fastest degradation rate was observed in swine manure (k = 0.016 ± 0.001 d-1; half-life = 42.8 days), while the slowest degradation rate was observed in poultry litter (k = 0.0043 ± 0.001 d-1; half-life = 161 days). The half-lives of OTC ranged between 88.9 (cattle manure) and 99.0 days (poultry litter), while TC persisted the longest of the tetracycline antibiotics studied with half-lives ranging from 92.4 days (cattle manure) to 330 days (swine manure). In general, the tetracyclines were found to degrade faster in cattle manure, which had the lowest concentrations of organic matter and metals as compared to swine and poultry manures. Our results demonstrate that tetracycline antibiotics persist in the animal manure after anaerobic digestion, which can potentially lead to emergence and persistence of antibiotic resistant bacteria in the environment when anaerobic digestion byproducts are land applied for crop production.


Assuntos
Antibacterianos/metabolismo , Esterco , Tetraciclinas/metabolismo , Gerenciamento de Resíduos/métodos , Anaerobiose , Animais , Bovinos , Clortetraciclina/metabolismo , Cinética , Gado , Esterco/análise , Oxitetraciclina/metabolismo , Aves Domésticas , Suínos
4.
Trop Anim Health Prod ; 48(1): 95-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26433723

RESUMO

The objective of this study was to evaluate the effect of increasing the supply of protein with different degradation rates on the performance and metabolism of growing Nellore cattle reared on Brachiaria brizantha cv. Marandu pasture during the transition period from the dry to rainy season. The experiment was installed on an area of 34 ha, divided into 12 paddocks with an average area of 2.85 ha. In the performance evaluation were utilized 72 recently weaned, non-castrated Nellore cattle with an initial body weight (BW) of 199 kg (SEM = 16). The following supplements were used: energy protein supplement containing 25% crude protein (CP) (C-25) and energy protein supplements containing 40% CP with one third highly degradable CP and two thirds poorly degradable CP (40-1/3NPN), one half highly degradable CP and one half poorly degradable CP (40-1/2NPN), and two thirds highly degradable CP and one third poorly degradable CP (40-2/3NPN). Higher protein degradation rates reduced supplement intake (P < 0.01). In the first period, animals consuming supplement 40-1/3NPN exhibited higher average daily gain (ADG) (0.30 kg/day), similar to that of animals receiving supplement 40-1/2NPN (P = 0.04). In the second period, supplement 40-2/3NPN resulted in lower ADG (0.19 kg/day less than the other supplements). There was no effect of supplement on animal performance in the third period (P > 0.10), when ADG was 0.56 kg/day. In conclusion, the response to supplementation is associated with interactions with characteristics of the forage canopy. Supplementation with a true protein source will be beneficial only during the early stage of the dry-rainy season transition period.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Estações do Ano , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal/fisiologia , Proteínas Alimentares/análise , Digestão , Aumento de Peso
5.
Int J Mol Sci ; 16(9): 20685-703, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26404248

RESUMO

Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year.


Assuntos
Biocombustíveis/análise , Resíduos Industriais/análise , Saccharum/química , Anaerobiose , Cinética , Metano/metabolismo
6.
Sci Total Environ ; 953: 176112, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39245373

RESUMO

The effect of climate change on the durability of buildings and external components is considered a relevant subject that requires research efforts. This study intends to contribute to the body of knowledge in this field through a practical-based, innovative quantitative methodology. This methodology is created to model the degradation evolution of rendered façades and project it based on the influence of the climate change signal for individual variables, considering their gradual impact. A sample of 26 rendered façades in residential buildings in Lisbon has been subjected to recent on-site visual inspections, to evaluate each case study's degradation condition. Previous inspections had been performed more than a decade ago in the context of a background methodology. This research highlights the influence of (i) maximum temperatures (TX) on global mean triennial degradation rates (∆Sw,mt), for a period of 30 years (1990-2020), and (ii) TX projections on degradation evolution from the date of the recent inspections until the last triennium of the reference degradation projections period (ΔSwFR and ΔSwFRN) (2020-2044). The correlation between TX and ΔSw,mt is significant, which indicates that the increase in maximum temperatures considerably explains the decrease in degradation rates from 1990 to 2020. The future global degradation of rendered façades based on TX scenarios is expected to (i) be lower than the one based on a historical observed trend and (ii) be the lowest when the temperature rise is the highest. Temperature warming, even though detrimental to some degradation phenomena, is expected to decelerate the overall degradation evolution of rendered façades in Portugal and possibly in analogous areas of the Mediterranean.

7.
J Agric Food Chem ; 72(13): 7497-7510, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520401

RESUMO

The kinetics, thermodynamics, and degradation of malvidin mono- and diglucosides were studied following a holistic approach by extending to the basic medium. In acidic conditions, the reversible kinetics of the flavylium cation toward the equilibrium is controlled by the hydration and cis-trans isomerization steps, while in the basic medium, the OH- nucleophilic addition to the anionic quinoidal bases is the slowest step. There is a pH range (transition pHs), between the acidic and basic paradigms, that includes physiological pH (7.4), where degradation reactions occur faster, preventing the system from reaching the equilibrium. The transition pH of the diglucoside is narrower, and in contrast with the monoglucoside, there is no evidence for the formation of colored oligomers among the degradation products. Noteworthy, OH- addition in position 4 to form B42-, a kinetic product that decreases the overall equilibration rate, was observed only for the diglucoside.


Assuntos
Antocianinas , Glucosídeos , Antocianinas/metabolismo , Termodinâmica
8.
Front Artif Intell ; 7: 1446368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144542

RESUMO

In Uganda, the absence of a unified dataset for constructing machine learning models to predict Foot and Mouth Disease outbreaks hinders preparedness. Although machine learning models exhibit excellent predictive performance for Foot and Mouth Disease outbreaks under stationary conditions, they are susceptible to performance degradation in non-stationary environments. Rainfall and temperature are key factors influencing these outbreaks, and their variability due to climate change can significantly impact predictive performance. This study created a unified Foot and Mouth Disease dataset by integrating disparate sources and pre-processing data using mean imputation, duplicate removal, visualization, and merging techniques. To evaluate performance degradation, seven machine learning models were trained and assessed using metrics including accuracy, area under the receiver operating characteristic curve, recall, precision and F1-score. The dataset showed a significant class imbalance with more non-outbreaks than outbreaks, requiring data augmentation methods. Variability in rainfall and temperature impacted predictive performance, causing notable degradation. Random Forest with borderline SMOTE was the top-performing model in a stationary environment, achieving 92% accuracy, 0.97 area under the receiver operating characteristic curve, 0.94 recall, 0.90 precision, and 0.92 F1-score. However, under varying distributions, all models exhibited significant performance degradation, with random forest accuracy dropping to 46%, area under the receiver operating characteristic curve to 0.58, recall to 0.03, precision to 0.24, and F1-score to 0.06. This study underscores the creation of a unified Foot and Mouth Disease dataset for Uganda and reveals significant performance degradation in seven machine learning models under varying distributions. These findings highlight the need for new methods to address the impact of distribution variability on predictive performance.

9.
Trends Ecol Evol ; 36(2): 113-122, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33168153

RESUMO

The global carbon cycle connects organic matter (OM) pools in soil, freshwater, and marine ecosystems with the atmosphere, thereby regulating their size and reactivity. Due to the complexity of biogeochemical processes and historically compartmentalized disciplines, ecosystem-specific conceptualizations of OM degradation have emerged independently of developments in other ecosystems. Recent discussions regarding the relative importance of molecular composition and ecosystem properties on OM degradation have diverged in opposing directions across subdisciplines, leaving our understanding inconsistent. Ecosystem-dependent theories are problematic since properties unique to an ecosystem may change in response to anthropogenic stressors, including climate change. The next breakthrough in our understanding of OM degradation requires a shift in focus towards developing a unified theory of controls on OM across ecosystems.


Assuntos
Formação de Conceito , Ecossistema , Carbono , Ciclo do Carbono , Mudança Climática , Solo
10.
J Hazard Mater ; 394: 121811, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32200234

RESUMO

Organophosphate flame retardants (OPFRs) have been increasingly utilized as flame retardants in various fields due to the phasing out of polybrominated diphenyl ethers. To achieve a better understanding of the degradation of OPFRs undergoing supercritical water oxidation (SCWO) process, two-dimensional and three-dimensional quantitative structure-activity relationship (2D-QSAR and 3D-QSAR) models were established to investigate the factors influencing the total carbon degradation rates (kTOC). Results of the QSAR models demonstrated reliable results to estimate the kTOC values, but varied in the influencing factors. Two distinct degradation mechanisms were subsequently proposed based on the distribution of LUMO in molecules for the 2D-QSAR model. CoMFA and CoMSIA methods were applied to develop the 3D-QSAR models. Steric fields were observed to influence kTOC values more than electrostatic fields in the CoMFA model with the contribution rates of 87.2% and 12.8%, respectively. In the CoMSIA model, influence on kTOC values varies between different types of fields with the hydrophobic field being the most influential at 62.1%, followed by the steric field at 25.7% and then the electrostatic field at 10.8%. Results from this study generated critical knowledge of influencing factors on OPFRs degradation and yielded theoretical basis for estimating removal behaviors of OPFRs undergoing SCWO process.

11.
Water Res ; 173: 115523, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044593

RESUMO

Though bank filtration diminishes the loads of many trace organic compounds (TOrCs) present in the source water, still there is a wide uncertainty on the influence of local environmental conditions on biodegradation processes. This research addresses the fate and transport behaviour of 37 trace organic compounds at a bank filtration site in Germany over a relatively long-time span of six years. Using two-dimensional heat and reactive transport modelling in FEFLOW, TOrCs are classified according to their occurrence in bank filtration wells with a residence time of up to 4 months. We identify 12 persistent compounds, 20 reactive compounds and 5 transformation products formed during aquifer passage. Estimates of first-order biodegradation rate constants are given for six reactive compounds. Minimum biodegradation rate constants (i.e. maximum half-lives) are approximated for eight compounds only present in the surface water. For some compounds, a simple first-order degradation model did not yield satisfactory results and the behaviour appears to be more complex. Processes like sorption, redox- and/or temperature-dependent biodegradation and temperature-dependent desorption are suspected but incorporating these into the model was beyond the scope of this paper that provides an overview for many compounds. Results highlight the ability of the sub-surface to improve the water quality during bank filtration, yet at the same time show the persistence of several compounds in the aquifer.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Filtração , Alemanha , Compostos Orgânicos
12.
Animals (Basel) ; 9(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683941

RESUMO

The aim of the present study was to evaluate the nutritional value, the rumen in vitro fermentation, and the in situ degradation of Brassica oleracea (L.) ssp. acephala (kales) and Brassica napus (L.) ssp. napobrassica (swedes) for winter use. Five varieties of each brassica were used in three field replicates and were randomized in a complete block nested design. All forage varieties were harvested at 210 days post-sowing to analyze the chemical composition, in vitro gas production, volatile fatty acid (VFA) production and in situ dry matter (DM) and crude protein (CP) degradability. Kales presented higher DM and neutral detergent fiber (NDF) content (p < 0.01), whereas swedes showed higher CP, metabolizable energy (ME), glucose, fructose, total sugars, NFC, and nonstructural carbohydrate (NSC) content (p < 0.01). The kale and swede varieties differed in their CP and sugar concentrations, whereas the kale varieties differed in their DM and raffinose content. The rates of gas production were higher for swedes than for kales (p < 0.01). No differences between the brassica species (p > 0.05) were observed in the total VFA production, whereas kales had a higher proportion of acetate and swedes had higher proportions of butyrate (p < 0.05). Only the swede varieties showed differences in VFA production (p < 0.05). The soluble fraction "a", potential and effective in situ DM degradability were higher in swedes (p < 0.01), but kales presented greater DM and CP degradation rates. Differences were observed between brassica species in the chemical composition, degradation kinetics, and ruminal fermentation products, whereas differences among varieties within species were less frequent but need to be considered.

13.
Water Res ; 162: 225-235, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279314

RESUMO

River bank filtration (RBF) is considered to efficiently remove nitrate and trace organic micropollutants (OMP) from polluted surface waters. This is essential for maintaining good groundwater quality and providing high quality drinking water. Predicting the fate of OMP during RBF is difficult as the biogeochemical factors controlling the removal efficiency are not fully understood. To determine in-situ removal efficiency and degradation rates of nitrate and OMP indicator substances we conducted a field study in a RBF system during a period of one and a half years incorporating temporally and spatially varying redox conditions and temperature changes typically occurring in temperate climates. RBF was analyzed by means of mixing ratios between infiltrated river water and groundwater as well as average residence times of surface water towards the individual groundwater observation wells. These results were used to calculate temperature dependent first order degradation rates of redox sensitive species and several OMP. Five out of ten investigated OMP were completely removed along RBF pathways. We demonstrate that degradation rates of several OMP during bank filtration were controlled by redox conditions and temperature whereby temperature itself also had a significant influence on the extent of the most reactive oxic zone. The seasonal variations in temperature alone could explain a considerable percentage of the variance in dissolved oxygen (34%), nitrate (81%) as well as the OMPs diclofenac (44%) and sulfamethoxazole (76%). Estimated in-situ degradation rates roughly varied within one order of magnitude for temperature changes between 5 °C and 20 °C. This study highlights that temporal variability in temperature and redox zonation is a significant factor for migration and degradation of nitrate and several OMPs.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Filtração , Oxirredução , Rios , Temperatura
14.
J R Soc Interface ; 15(142)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743273

RESUMO

Ring oscillators are biochemical circuits consisting of a ring of interactions capable of sustained oscillations. The nonlinear interactions between genes hinder the analytical insight into their function, usually requiring computational exploration. Here, we show that, despite the apparent complexity, the stability of the unique steady state in an incoherent feedback ring depends only on the degradation rates and a single parameter summarizing the feedback of the circuit. Concretely, we show that the range of regulatory parameters that yield oscillatory behaviour is maximized when the degradation rates are equal. Strikingly, this result holds independently of the regulatory functions used or number of genes. We also derive properties of the oscillations as a function of the degradation rates and number of nodes forming the ring. Finally, we explore the role of mRNA dynamics by applying the generic results to the specific case with two naturally different degradation timescales.


Assuntos
Simulação por Computador , Retroalimentação Fisiológica/fisiologia , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , RNA Mensageiro/metabolismo
15.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1081-1082: 25-32, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499465

RESUMO

A rapid, sensitive and effective supercritical fluid chromatographic-tandem mass spectrometry (SFC-MS/MS) method was developed to analyze thiacloprid for the first time. The SFC-MS/MS conditions were optimized with the ultra-performance convergence chromatography (UPC2) BEH column (100 mm × 3.0 mm, 1.7 µm particle size) and thiacloprid was eluted at 1.22 min in gradient mode with CO2/methanol as mobile phase. The 0.1% formic acid in methanol (v/v) was used as postcolumn compensation solution to improve sensitivity. The ABPR pressure, flow rate of mobile phase and flow rate of compensation pump were set at 1800 psi, 1.8 mL/min, and 0.1 mL/min, respectively. The average recoveries of thiacloprid in soil at four spiking levels (5, 10, 100, 1000 µg/kg) ranged between 78.8% and 107.1% with relative standard deviations (RSDs) lower than 12.2% and the limit of quantitation (LOQ) was 5 µg/kg. The proposed method can distinctly improve the analysis efficiency by 2-12 times and reduce the solvent consumption by 5%-95% compared with reported methods. It was applied to investigate the dissipation rates of thiacloprid in greenhouse vegetables and soil under different application modes. The half-lives of thiacloprid in cucumber and soil were 9.55-20.44 days and 3.74-9.14 days separately under different application modes, 10.60 days in tomato under foliar spraying. The residues in vegetables under root irrigation were all less than that under foliar spraying. The results could offer useful data for risk assessment of thiacloprid in agricultural production.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Neonicotinoides/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Espectrometria de Massas em Tandem/métodos , Tiazinas/análise , Verduras/química , Agricultura/métodos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Cell Rep ; 23(2): 376-388, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29641998

RESUMO

Large-scale inference of eukaryotic transcription-regulatory networks remains challenging. One underlying reason is that existing algorithms typically ignore crucial regulatory mechanisms, such as RNA degradation and post-transcriptional processing. Here, we describe InfereCLaDR, which incorporates such elements and advances prediction in Saccharomyces cerevisiae. First, InfereCLaDR employs a high-quality Gold Standard dataset that we use separately as prior information and for model validation. Second, InfereCLaDR explicitly models transcription factor activity and RNA half-lives. Third, it introduces expression subspaces to derive condition-responsive regulatory networks for every gene. InfereCLaDR's final network is validated by known data and trends and results in multiple insights. For example, it predicts long half-lives for transcripts of the nucleic acid metabolism genes and members of the cytosolic chaperonin complex as targets of the proteasome regulator Rpn4p. InfereCLaDR demonstrates that more biophysically realistic modeling of regulatory networks advances prediction accuracy both in eukaryotes and prokaryotes.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Bacillus subtilis/genética , Bases de Dados Genéticas , Meia-Vida , RNA/metabolismo , Estabilidade de RNA , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo
17.
Cell Syst ; 4(5): 495-504.e5, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28365149

RESUMO

Protein synthesis is the most energy-consuming process in a proliferating cell, and understanding what controls protein abundances represents a key question in biology and biotechnology. We quantified absolute abundances of 5,354 mRNAs and 2,198 proteins in Saccharomyces cerevisiae under ten environmental conditions and protein turnover for 1,384 proteins under a reference condition. The overall correlation between mRNA and protein abundances across all conditions was low (0.46), but for differentially expressed proteins (n = 202), the median mRNA-protein correlation was 0.88. We used these data to model translation efficiencies and found that they vary more than 400-fold between genes. Non-linear regression analysis detected that mRNA abundance and translation elongation were the dominant factors controlling protein synthesis, explaining 61% and 15% of its variance. Metabolic flux balance analysis further showed that only mitochondrial fluxes were positively associated with changes at the transcript level. The present dataset represents a crucial expansion to the current resources for future studies on yeast physiology.


Assuntos
Biossíntese de Proteínas/fisiologia , RNA Mensageiro/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Proteoma/genética , Proteômica , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma
18.
Sci Total Environ ; 573: 106-114, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27552734

RESUMO

The degradation of conventional diesel (D), synthetic diesel (Syntroleum), and pure fish biodiesel (B100) by indigenous microbes was investigated in laboratory microcosms containing contaminated sand. The fate of volatiles and the influence of volatilization on degradation rates were examined by placing activated carbon (AC) in microcosm headspaces to sorb volatiles. Three AC regimes were compared: no activated carbon (NAC), regular weekly AC change (RAC), and frequent AC change (FAC), where the frequency of activated carbon exchange declined from daily to weekly. Generally, the alternative fuels were biodegraded faster than diesel fuel. Hydrocarbon mineralization percentages for the different fuel types over 28days were between 23% (D) and 48% (B100) in the absence of activated carbon, decreased to 12% (D) - 37% (B100) with weekly AC exchange, and were further reduced to 9-22% for more frequent AC change. Sorption of volatiles to AC lowered their availability as a substrate for microbes, reducing respiration. Volatilization was negligible for the biodiesel. A mass balance for the carbon initially present as hydrocarbons in microcosms with activated carbon in the head space was on average 92% closed, with 45-70% remaining in the soil after 4weeks, 9-37% mineralized and up to 12% volatilized. Based on nutrient consumption, up to 29% of the contaminants were likely converted into biomass.


Assuntos
Biocombustíveis/análise , Carvão Vegetal/química , Gasolina/análise , Consórcios Microbianos , Poluentes do Solo/análise , Compostos Orgânicos Voláteis/análise , Biodegradação Ambiental , Biomassa , Dióxido de Carbono/análise , Modelos Teóricos , Volatilização
19.
J Contam Hydrol ; 156: 78-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270159

RESUMO

Emerging organic contaminants (EOCs) are frequently detected in urban surface water and the adjacent groundwater and are therefore an increasing problem for potable water quality. River bank filtration (RBF) is a beneficial pretreatment step to improve surface water quality for potable use. Removal is mainly caused by microbial degradation of micropollutants, while sorption retards the transport. The quantification of biodegradation and adsorption parameters for EOCs at field scale is still scarce. In this study, the fate and behavior of a range of organic compounds during RBF were investigated using a two dimensional numerical flow- and transport model. The data base used emanated from a project conducted in Berlin, Germany (NASRI: Natural and Artificial Systems for Recharge and Infiltration). Oxygen isotope signatures and hydraulic head data were used for model calibration. Afterwards, twelve organic micropollutants were simulated with a reactive transport model. Three compounds (primidone, EDTA, and AMDOPH) showed conservative behavior (no biodegradation or sorption). For the nine remaining compounds (1.5 NDSA, AOX, AOI, MTBE, carbamazepine, clindamycin, phenazone, diclofenac and sulfamethoxazole), degradation and/or sorption was observed. 1.5 NDSA and AOX were not sorbed, but slightly degraded with model results for λ=2.25e(-3) 1/d and 2.4e(-3) 1/d. For AOI a λ=0.0106 1/d and R=1 were identified. MTBE could be characterized well assuming R=1 and a low 1st order degradation rate constant (λ=0.0085 1/d). Carbamazepine degraded with a half life time of about 66 days after a threshold value of 0.2-0.3 µg/L was exceeded and retarded slightly (R=1.7). Breakthrough curves of clindamycin, phenazone, diclofenac and sulfamethoxazole could be fitted less well, probably due to the dependency of degradation on temperature and redox conditions, which are highly transient at the RBF site. Conditions range from oxic to anoxic (up to iron-reducing), with the oxic and denitrifying zones moving spatially back and forth over time.


Assuntos
Modelos Teóricos , Rios/química , Poluentes da Água/análise , Purificação da Água/métodos , Adsorção , Berlim , Biodegradação Ambiental , Monitoramento Ambiental/métodos , Água Subterrânea/química , Isótopos de Oxigênio/análise , Rios/microbiologia , Movimentos da Água , Poluentes da Água/química , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA