Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.520
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450207

RESUMO

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Assuntos
Basófilos/patologia , Neurônios/patologia , Prurido/patologia , Doença Aguda , Alérgenos/imunologia , Animais , Doença Crônica , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Histamina/metabolismo , Humanos , Imunoglobulina E/imunologia , Inflamação/patologia , Leucotrienos/metabolismo , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Prurido/imunologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
2.
Cell ; 171(1): 217-228.e13, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890086

RESUMO

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.


Assuntos
Prurido/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Dermatopatias/imunologia , Animais , Gânglios Espinais , Humanos , Interleucina-13/imunologia , Interleucina-4/imunologia , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prurido/metabolismo , Dermatopatias/patologia
3.
Immunol Rev ; 326(1): 151-161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39007725

RESUMO

Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.


Assuntos
Alérgenos , Dermatite Atópica , Hipersensibilidade Alimentar , Pele , Animais , Humanos , Hipersensibilidade Alimentar/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/etiologia , Alérgenos/imunologia , Pele/imunologia , Camundongos , Modelos Animais de Doenças , Tolerância Imunológica , Proteínas Filagrinas
4.
Physiol Rev ; 100(3): 945-982, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31869278

RESUMO

Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.


Assuntos
Prurido/metabolismo , Prurido/fisiopatologia , Animais , Humanos , Neurônios/fisiologia , Pele/inervação , Medula Espinal/citologia , Medula Espinal/fisiologia
5.
Trends Immunol ; 45(2): 138-153, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38238227

RESUMO

Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.


Assuntos
Hipersensibilidade , Linfoma , Humanos , Mutação com Ganho de Função , Hipersensibilidade/genética , Regulação da Expressão Gênica , Células Germinativas , Fator de Transcrição STAT6/genética
6.
Immunol Rev ; 317(1): 95-112, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36815685

RESUMO

Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.


Assuntos
Dermatite Atópica , Dermatopatias , Humanos , Animais , Camundongos , Prostaglandinas , Pele , Ácidos Graxos
7.
J Biol Chem ; 300(10): 107733, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233228

RESUMO

Transient receptor potential vanilloid 3 channel (TRPV3) is closely associated with skin inflammation, but there is a lack of effective and specific inhibitors for clinical use. In this study, we identified antimalarial hydroxychloroquine (HCQ) as a selective TRPV3 inhibitor following the prediction by network pharmacology data analysis. In whole-cell patch-clamp recordings, HCQ inhibited the current of the TRPV3 channel, with an IC50 of 51.69 ± 4.78 µM. At the single-channel level, HCQ reduced the open probability of TRPV3 and decreased single-channel conductance. Molecular docking and site-directed mutagenesis confirmed that residues in the pore domain were critical for the activity of HCQ. In vivo, HCQ effectively reduced carvacrol-induced epidermal thickening, erythema, and desquamation. Additionally, the serum immunoglobulin E and inflammatory factors such as tumor necrosis factor-α and interleukin-6 were markedly decreased in the dorsal skin tissues in the HCQ treatment group, as compared to the model group. Our results suggested the antimalarial HCQ may represent a potential alleviator for treating skin inflammation by inhibiting TRPV3 channels.

8.
Eur J Immunol ; 54(1): e2249982, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804068

RESUMO

Epithelial/immune interactions are characterized by the different properties of the various epithelial tissues, the mediators involved, and the varying immune cells that initiate, sustain, or abrogate allergic diseases on the surface. The intestinal mucosa, respiratory mucosa, and regular skin feature structural differences according to their primary function and surroundings. In the context of these specialized functions, the active role of the epithelium in shaping immune responses is increasingly recognizable. Crosstalk between epithelial and immune cells plays an important role in maintaining homeostatic conditions. While cells of the myeloid cell lineage, mainly macrophages, are the dominating immune cell population in the skin and the respiratory tract, lymphocytes comprise most intraepithelial immune cells in the intestine under healthy conditions. Common to all surface epithelia is the fact that innate immune cells represent the first line of immunosurveillance that either directly defeats invading pathogens or initiates and coordinates more effective successive immune responses involving adaptive immune cells and effector cells. Pharmacological approaches for the treatment of allergic and chronic inflammatory diseases involving epithelial barriers target immunological mediators downstream of the epithelium (such as IL-4, IL-5, IL-13, and IgE). The next generation of therapeutics involves upstream events of the inflammatory cascade, such as epithelial-derived alarmins and related mediators.


Assuntos
Hipersensibilidade , Humanos , Pele , Epitélio , Mucosa Intestinal , Linfócitos , Imunidade Inata
9.
Eur J Immunol ; : e2250280, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030782

RESUMO

Langerhans cells (LCs) are the key antigen-presenting cells in the epidermis in normal conditions and respond differentially to environmental and/or endogenous stimuli, exerting either proinflammatory or anti-inflammatory effects. Current knowledge about LCs mainly originates from studies utilizing mouse models, whereas with the development of single-cell techniques, there has been significant progress for human LCs, which has updated our understanding of the phenotype, ontogeny, differentiation regulation, and function of LCs. In this review, we delineated the progress of human LCs and summarized LCs' function in inflammatory skin diseases, providing new ideas for precise regulation of LC function in the prevention and treatment of skin diseases.

10.
Int Immunol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162776

RESUMO

Allergy is a complex array of diseases influenced by innate and adaptive immunity, genetic polymorphisms, and environmental triggers. Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by barrier defects and immune dysregulation, sometimes leading to asthma and food allergies because of the atopic march. During atopic skin inflammation, Langerhans cells and dendritic cells (DCs) in the skin capture and deliver allergen information to local lymph nodes. DCs are essential immune sensors coordinating immune reactions by capturing and presenting antigens to T cells. In the context of allergic responses, DCs play a crucial role in instructing two types of helper T cells - type 2 helper T (Th2) cells and follicular helper T (TFH) cells - in allergic responses and IgE antibody responses. In skin sensitization, the differentiation and function of Th2 cells and TFH cells are influenced by skin-derived factors, including epithelial cytokines, chemokines, and signaling pathways to modify the function of migratory DCs and conventional DCs. In this review, we aim to understand the specific mechanisms involving DCs in allergic responses to provide insights into the pathogenesis of allergic diseases and potential therapeutic strategies.

11.
Int Immunol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271155

RESUMO

Atopic diseases, including atopic dermatitis (AD), food allergy (FA), asthma, and allergic rhinitis (AR) are closely related to inflammatory diseases involving different body sites (i.e. the skin, airway, and digestive tract) with characteristic features including specific IgE to allergens (so-called 'atopy') and Th2 cell-mediated inflammation. It has been recognized that AD often precedes the development of other atopic diseases. The progression from AD during infancy to FA or asthma/AR in later childhood is referred as the 'atopic march' (AM). Clinical, genetic and experimental studies have provided evidence that allergen sensitization occurring through AD skin could be the origin of the AM. Here, we provide an updated review focusing on the role of the skin in the AM, from genetic mutations and environmental factors associated with epidermal barrier dysfunction in AD and the AM, to immunological mechanisms for skin sensitization, particularly recent progress on the function of key cytokines produced by epidermal keratinocytes or by immune cells infiltrating the skin during AD. We also highlight the importance of developing strategies that target AD skin to prevent and attenuate the AM.

12.
FASEB J ; 38(1): e23359, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102969

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by severe pruritus and eczematous skin lesions. Although IL-31, a type 2 helper T (Th2)-derived cytokine, is important to the development of pruritus and skin lesions in AD, the blockade of IL-31 signaling does not improve the skin lesions in AD. Oncostatin M (OSM), a member of IL-6 family of cytokines, plays important roles in the regulation of various inflammatory responses through OSM receptor ß subunit (OSMRß), a common receptor subunit for OSM and IL-31. However, the effects of OSM on the pathogenesis of AD remain to be elucidated. When AD model mice were treated with OSM, skin lesions were exacerbated and IL-4 production was increased in the lymph nodes. Next, we investigated the effects of the monoclonal antibody (mAb) against OSMRß on the pathogenesis of AD. Treatment with the anti-OSMRß mAb (7D2) reduced skin severity score in AD model mice. In addition to skin lesions, scratching behavior was decreased by 7D2 mAb with the reduction in the number of OSMRß-positive neurons in the dorsal root ganglia of AD model mice. 7D2 mAb also reduced the serum concentration of IL-4, IL-13, and IgE as well as the gene expressions of IL-4 and IL-13 in the lymph nodes of AD model mice. Blockade of both IL-31 and OSM signaling is suggested to suppress both pruritus and Th2 responses, resulting in the improvement of skin lesions in AD. The anti-OSMRß mAb may be a new therapeutic candidate for the treatment of AD.


Assuntos
Dermatite Atópica , Humanos , Camundongos , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Interleucina-13 , Interleucina-4/genética , Pele/metabolismo , Citocinas/metabolismo , Prurido/tratamento farmacológico
13.
Cell Mol Life Sci ; 81(1): 311, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066932

RESUMO

Lepidopterism, a skin inflammation condition caused by direct or airborne exposure to irritating hairs (setae) from processionary caterpillars, is becoming a significant public health concern. Recent outbreaks of the oak processionary caterpillar (Thaumetopoea processionea) have caused noteworthy health and economic consequences, with a rising frequency expected in the future, exacerbated by global warming promoting the survival of the caterpillar. Current medical treatments focus on symptom relief due to the lack of an effective therapy. While the source is known, understanding the precise causes of symptoms remain incomplete understood. In this study, we employed an advanced method to extract venom from the setae and identify the venom components through high-quality de novo transcriptomics, venom proteomics, and bioinformatic analysis. A total of 171 venom components were identified, including allergens, odorant binding proteins, small peptides, enzymes, enzyme inhibitors, and chitin biosynthesis products, potentially responsible for inflammatory and allergic reactions. This work presents the first comprehensive proteotranscriptomic database of T. processionea, contributing to understanding the complexity of lepidopterism. Furthermore, these findings hold promise for advancing therapeutic approaches to mitigate the global health impact of T. processionea and related caterpillars.


Assuntos
Mariposas , Proteômica , Transcriptoma , Animais , Proteômica/métodos , Mariposas/genética , Venenos de Artrópodes , Larva/metabolismo , Quercus , Perfilação da Expressão Gênica , Alérgenos/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteoma/metabolismo , Biologia Computacional/métodos
14.
Cell Mol Life Sci ; 81(1): 281, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940922

RESUMO

As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.


Assuntos
Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Animais , Humanos , Venenos de Artrópodes , Mariposas , Pele/metabolismo , Pele/patologia , Larva/metabolismo
15.
Semin Immunol ; 58: 101520, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34799224

RESUMO

The IL-23/IL-17 cytokine axis is related to spondyloarthropathy (SpA) pattern diseases that target the skin, eye, gut and joints. These share overlapping target tissues with Th2 type or allergic diseases, including the skin, eye and gut but SpA diseases exhibit distinct microanatomical topography, molecular characteristics, and clinical features including uveitis, psoriasis, apical pulmonary involvement, lower gastrointestinal involvement with colitis, and related arthritides including psoriatic arthritis and ankylosing spondylitis. Inflammatory arthritis is conspicuously absent from the Th2 diseases which are characterised IL-4/IL-13 dependent pathway activation including allergic rhino-conjunctivitis, atopic eczema, allergic asthma and food allergies. This traditional understanding of non-overlap of musculoskeletal territory between that atopic diseases and the IL-17 -mediated SpA diseases is undergoing a critical reappraisal with the recent demonstration of IL-4/IL-13 blockade, may be associated with the development of SpA pattern arthritis, psoriasiform skin disease and occasional anterior uveitis. Given the known plasticity within Th paradigm pathways, these findings suggest dynamic Th2 cytokine and Th17 cytokine counter regulation in vivo in humans. Unexpected, this is the case in peripheral enthesis and when the IL-4/13 immunological brake on IL-23/17 cytokines is removed, a SpA phenotype may emerge. We discuss hitherto unexpected observations in SpA, showing counter regulation between the Th17 and Th2 pathways at sites including the entheses that collectively indicate that the emergent reverse translational therapeutic data is more than coincidental and offers new insights into the "Th paradigms" in atopy and SpA.


Assuntos
Artrite , Psoríase , Humanos , Interleucina-17 , Citocinas/metabolismo , Interleucina-13 , Interleucina-4 , Interleucina-23
16.
Genomics ; 116(4): 110870, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38821220

RESUMO

The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.


Assuntos
Linfócitos T CD4-Positivos , Dermatite Atópica , Análise de Célula Única , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Humanos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Adulto , Células T de Memória/metabolismo , Células T de Memória/imunologia , Pele/metabolismo , Células HaCaT , Memória Imunológica , Masculino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-39142443

RESUMO

BACKGROUND: Insight into the pathophysiology of inflammatory skin diseases, especially at the proteomic level, is severely hampered by the lack of adequate in situ data. OBJECTIVE: We characterized lesional and nonlesional skin of inflammatory skin diseases using skin microdialysis. METHODS: Skin microdialysis samples from patients with atopic dermatitis (AD, n = 6), psoriasis vulgaris (PSO, n = 7), or prurigo nodularis (PN, n = 6), as well as healthy controls (n = 7), were subjected to proteomic and multiplex cytokine analysis. Single-cell RNA sequencing of skin biopsy specimens was used to identify the cellular origin of cytokines. RESULTS: Among the top 20 enriched Gene Ontology (GO; geneontology.org) annotations, nicotinamide adenine dinucleotide metabolic process, regulation of secretion by cell, and pyruvate metabolic process were elevated in microdialysates from lesional AD skin compared with both nonlesional skin and controls. The top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG; genome.jp/kegg) pathways in these 3 groups overlapped almost completely. In contrast, nonlesional skin from patients with PSO or PN and control skin showed no overlap with lesional skin in this KEGG pathway analysis. Lesional skin from patients with PSO, but not AD or PN, showed significantly elevated protein levels of MCP-1 compared with nonlesional skin. IL-8 was elevated in lesional versus nonlesional AD and PSO skin, whereas IL-12p40 and IL-22 were higher only in lesional PSO skin. Integrated single-cell RNA sequencing data revealed identical cellular sources of these cytokines in AD, PSO, and PN. CONCLUSION: On the basis of microdialysates, the proteomic data of lesional PSO and PN skin, but not lesional AD skin, differed significantly from those of nonlesional skin. IL-8, IL-22, MCP-1, and IL-12p40 might be suitable markers for minimally invasive molecular profiling.

18.
J Allergy Clin Immunol ; 153(5): 1344-1354.e5, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336257

RESUMO

BACKGROUND: Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE: We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS: Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS: Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION: Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.


Assuntos
Basófilos , Dermatite Atópica , Interleucina-4 , Ovalbumina , Células Th2 , Animais , Basófilos/imunologia , Camundongos , Interleucina-4/imunologia , Interleucina-4/genética , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Ovalbumina/imunologia , Células Th2/imunologia , Pele/imunologia , Pele/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Células Dendríticas/imunologia , Camundongos Transgênicos , Mastócitos/imunologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-39178993

RESUMO

BACKGROUND: Patients with atopic dermatitis (AD) often have elevated type 2 inflammatory serum biomarkers. OBJECTIVE: To report changes in thymus- and activation-regulated chemokine (TARC)/CC chemokine ligand 17 (CCL17), total immunoglobulin E (IgE), lactate dehydrogenase (LDH), and eosinophils in pediatric patients treated with dupilumab or placebo. METHODS: Biomarker data were analyzed from three randomized, double-blind, placebo-controlled, phase 3 studies of patients with moderate-to-severe AD. Patients aged 6 months-5 years were randomized to weight-dependent dupilumab 200/300mg every 4 weeks (q4w) or placebo; aged 6-11 years to dupilumab 100/200mg every 2 weeks (q2w), dupilumab 300mg q4w, or placebo; aged 12-17 years to dupilumab 200/300mg q2w, dupilumab 300mg q4w, or placebo. The youngest two groups also applied topical corticosteroids. Median percent changes from baseline to week 16 reported using last observation carried forward method, censoring after rescue treatment. RESULTS: Pediatric patients who received dupilumab vs placebo achieved significantly greater median percent reductions at week 16 in: TARC/CCL17 (-83.3% to -72.4% vs -14.9% to -1.8%), total IgE (-71.2% to -58.4% vs -21.0% to +28.1%), and LDH (-26.2% to -9.8% vs -1.5% to +1.5%). All comparisons were significantly different (P < .0001) between each dupilumab dosing group and respective placebo groups. In contrast, absolute changes in eosinophils were small in all groups. CONCLUSIONS: Dupilumab treatment for pediatric patients with moderate-to-severe AD significantly reduced levels of TARC/CCL17, total IgE, and LDH to levels comparable to those of healthy controls, reflecting a reduction in systemic type 2 and general inflammation.

20.
J Allergy Clin Immunol ; 153(4): 1148-1154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262502

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by dry, pruritic skin. Several studies have described nocturnal increases in itching behavior, suggesting a role for the circadian rhythm in modulating symptom severity. However, the circadian rhythm of metabolites in the skin and serum of patients with AD is yet to be described. OBJECTIVE: We sought to assess circadian patterns of skin and serum metabolism in patients with AD. METHODS: Twelve patients with moderate to severe AD and 5 healthy volunteers were monitored for 28 hours in a controlled environment. Serum was collected every 2 hours and tape strips every 4 hours from both lesional and nonlesional skin in participants with AD and location-, sex-, and age-matched healthy skin of controls. We then performed an untargeted metabolomics analysis, examining the circadian peaks of metabolism in patients with AD. RESULTS: Distinct metabolic profiles were observed in AD versus control samples. When accounting for time of collection, the greatest differences in serum metabolic pathways were observed in arachidonic acid, steroid biosynthesis, and terpenoid backbone biosynthesis. We identified 42 circadian peaks in AD or control serum and 17 in the skin. Pathway enrichment and serum-skin metabolite correlation varied throughout the day. Differences were most evident in the late morning and immediately after sleep onset. CONCLUSIONS: Although limited by a small sample size and observational design, our findings suggest that accounting for sample collection time could improve biomarker detection studies in AD and highlight that metabolic changes may be associated with nocturnal differences in symptom severity.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/metabolismo , Pele/metabolismo , Prurido/metabolismo , Ritmo Circadiano , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA