Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 838
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Ther ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38379282

RESUMO

Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.

2.
Mol Med ; 30(1): 63, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760678

RESUMO

BACKGROUND: Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes. The purpose of this study was to investigate the effects of AMPK activation on wound healing and explore the underlying mechanisms. METHODS: AMPK activator A769662 was topically applied in wound models of diabetic mice. Alterations in the wound site were observed and analyzed by immunohistochemistry. The markers related to autophagy and ferritinophagy were analyzed by western blotting and immunofluorescence staining. The role of AMPK activation and ferritinophagy were also analyzed by western blotting. RESULTS: Our results show that AMPK activation improved diabetic wound healing and reduced the accumulation of senescent cells. Intriguingly, we found that AMPK activation-induced ferroptosis is autophagy-dependent. We detected that the level of ferritin had deceased and NCOA4 was markedly increased after AMPK activation treatment. We further investigated that NCOA4-mediated ferritinophagy was involved in ferroptosis triggered by AMPK activation. Most importantly, AMPK activation can reverse the ferroptosis-insensitive of senescent fibroblast cells in diabetic mice wound area and promote wound healing. CONCLUSIONS: These results suggest that activating AMPK can promote diabetic wound healing by reversing the ferroptosis-insensitive of senescent fibroblast cells. AMPK may serve as a regulatory factor in senescent cells in the diabetic wound area, therefore AMPK activation can become a promising therapeutic method for diabetic non-healing wounds.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Senescência Celular , Diabetes Mellitus Experimental , Ferritinas , Coativadores de Receptor Nuclear , Cicatrização , Animais , Camundongos , Ferritinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Masculino , Ferroptose , Humanos , Modelos Animais de Doenças , Ativação Enzimática
3.
Biochem Biophys Res Commun ; 690: 149271, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006802

RESUMO

Many scholars have suggested that exosomes (Exos) can carry active molecules to induce angiogenesis and thus accelerate diabetic wound healing. Heme oxygenase-1 (HO-1) encoded by the gene HMOX1 promotes wound healing in DM by enhancing angiogenesis. Nevertheless, whether HMOX1 regulates wound healing in DM through mesenchymal stem cell-derived exosomes (MSC-Exos) remains to be further explored. The primary isolated- and cultured-cells expressed MSC-specific marker proteins, and had low immunogenicity and multi-differentiation potential, which means that MSCs were successfully isolated in this study. Notably, HO-1 protein expression was significantly higher in Exo-HMOX1 than in Exos, indicating that HMOX1 could be delivered to Exos as an MSCs-secreted protein. After verifying the -Exo structure, fibroblasts, keratinocytes, and human umbilical vein endothelial cells (HUVECs) were incubated with Exo-HMOX1 or Exo, and the findings displayed that Exo-HMOX1 introduction promoted the proliferation and migration of fibroblasts, keratinocytes and the angiogenic ability of HUVECs in vitro study. After establishing diabetic wound model mice, PBS, Exo, and Exo-HMOX1 were subcutaneously injected into multiple sites on the 1st, 3rd, 7th, and 14th day, DM injected with Exo-HMOX1 showed faster wound healing, re-epithelialization, collagen deposition, and angiogenesis than those in PBS and Exo groups in vitro study. In summary, Exo-HMOX1 could enhance the activity of fibroblasts, keratinocytes, and HUVEC, and accelerate wound healing by promoting angiogenesis in DM.


Assuntos
Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Exossomos/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Angiogênese , Cicatrização , Células Endoteliais da Veia Umbilical Humana , Diabetes Mellitus/metabolismo , Fibroblastos/metabolismo
4.
Small ; : e2404538, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105463

RESUMO

Diabetic wounds are characterized by the disruption and cessation of essential healing stages, which include hemostasis, inflammation, proliferation, and remodeling. However, traditional treatments for diabetic wounds concentrate on individual stages of the healing process. Herein, this study utilizes mask-mediated sequential polymerization and varied cross-linking techniques to develop dual-modular microneedles (MNs) with fast- and slow-module, exhibiting varying degradation rates tailored for the full spectrum of diabetic wound healing. First, MNs incorporating calcium ions and dopamine synergistically promote rapid hemostasis. Second, fast-module physically cross-linked MNs rapidly D-mannose/dopamine-enhanced tripolyphosphate-quaternized chitosan (mDTC) nanoparticles (NPs) loaded with microRNA-147 (miRNA-147) to manage inflammation and oxidative stress in diabetic wounds. Additionally, dopamine in these NPs enhances their internalization and safeguards miRNA-147 from oxidative stress and RNase degradation. Finally, slow-module chemically cross-linked MNs facilitate the continuous release of deferoxamine (DFO) and dopamine, accelerating angiogenesis and tissue regeneration during the proliferation and remodeling stages. Manganese/dopamine-enhanced calcium peroxide NPs within the MNs initiate a blast-like generation of oxygen bubbles, not only enhancing the delivery of miRNA-mDTC NPs and DFO but also alleviating tissue hypoxia. Consequently, dual-modular MNs are instrumental in promoting rapid and complete healing of diabetic wounds through all stages of healing.

5.
Small ; 20(10): e2305076, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909382

RESUMO

Chronic diabetic wounds remain a worldwide challenge for both the clinic and research. Given the vicious circle of oxidative stress and inflammatory response as well as the impaired angiogenesis of the diabetic wound tissues, the wound healing process is disturbed and poorly responds to the current treatments. In this work, a nickel-based metal-organic framework (MOF, Ni-HHTP) with excellent antioxidant activity and proangiogenic function is developed to accelerate the healing process of chronic diabetic wounds. The Ni-HHTP can mimic the enzymatic catalytic activities of antioxidant enzymes to eliminate multi-types of reactive species through electron transfer reactions, which protects cells from oxidative stress-related damage. Moreover, this Ni-based MOF can promote cell migration and angiogenesis by activating transforming growth factor-ß1 (TGF-ß1) in vitro and reprogram macrophages to the anti-inflammatory phenotype. Importantly, Ni-HHTP effectively promotes the healing process of diabetic wounds by suppressing the inflammatory response and enhancing angiogenesis in vivo. This study reports a versatile and promising MOF-based nanozyme for diabetic wound healing, which may be extended in combination with other wound dressings to enhance the management of diabetic or non-healing wounds.


Assuntos
Diabetes Mellitus Experimental , Estruturas Metalorgânicas , Animais , Espécies Reativas de Oxigênio , Estruturas Metalorgânicas/farmacologia , Níquel , Angiogênese , Cicatrização/fisiologia , Antioxidantes , Hidrogéis
6.
Small ; 20(29): e2310247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368267

RESUMO

Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.


Assuntos
Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Peróxido de Hidrogênio/química , Esterilização/métodos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Glucose
7.
Small ; : e2403160, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051538

RESUMO

Diabetic wounds pose a persistent challenge due to their slow healing nature, primarily caused by bacterial infection and excessive reactive oxygen species (ROS)-induced inflammation. In this study, carbon dots with synergistic antibacterial and antioxidant properties, referred to as AA-CDs, are developed specifically for diabetic wound healing using a straightforward solvothermal method. By utilizing cost-effective precursors like citric acid and ascorbic acid, AA-CDs are engineered to possess tailored functions of photothermal sterilization and ROS scavenging. The resulting AA-CDs demonstrats broad-spectrum antibacterial activity, particularly against multidrug-resistant strains, along with efficient ROS scavenging both in solution and within cells. Additionally, AA-CDs exhibits a protective effect against oxidative stress-induced damage. Notably, with a high photothermal conversion efficiency (41.18%), AA-CDs displays heat-enhanced antioxidant performance, providing not only augmented ROS scavenging but also additional protection against oxidative stress, yielding a true "1 + 1 > 2" effect. To facilitate their use in vivo, AA-CDs are incorporated into a thermally responsive hydrogel, which exhibits evident anti-inflammatory properties by modulating inflammatory factors and significantly promots the healing of diabetic wounds. This study underscores the value of integrated platforms for diabetic wound healing and highlights the potential of versatile CDs as promising therapeutic agents in biomedical applications.

8.
Small ; 20(25): e2309276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247194

RESUMO

Macrophage dysfunction is one of the primary factors leading to the delayed healing of diabetic wounds. Hypoxic bone marrow mesenchymal stem cells-derived exosomes (hyBMSC-Exos) have been shown to play an active role in regulating cellular function through the carried microRNAs. However, the administration of hyBMSC-Exos alone in diabetic wounds usually brings little effect, because the exosomes are inherently unstable and have a short retention time at the wounds. In this study, a multifunctional hydrogel based on gallic acid (GA) conjugated chitosan (Chi-GA) and partially oxidized hyaluronic acid (OHA) is prepared for sustained release of hyBMSC-Exos. The hydrogel not only exhibits needs-satisfying physicochemical properties, but also displays outstanding biological performances such as low hemolysis rate, strong antibacterial capacity, great antioxidant ability, and excellent biocompatibility. It has the ability to boost the stability of hyBMSC-Exos, leading to a continuous and gradual release of the exosomes at wound locations, ultimately enhancing the exosomes' uptake efficiency by target cells. Most importantly, hyBMSC-Exos loaded hydrogel shows an excellent ability to promote diabetic wound healing by regulating macrophage polarization toward M2 phenotype. This may be because exosomal miR-4645-5p and antioxidant property of the hydrogel synergistically inhibit SREBP2 activity in macrophages. This study presents a productive approach for managing diabetic wounds.


Assuntos
Complicações do Diabetes , Exossomos , Hidrogéis , Células-Tronco Mesenquimais , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Exossomos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/patologia , Pele/efeitos dos fármacos , Pele/lesões , Humanos , Sobrevivência Celular/efeitos dos fármacos , Bactérias/efeitos dos fármacos
9.
Small ; : e2405531, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148199

RESUMO

Nanotizing biosealant components offer a multitude of chemical functionalities for superior adhesion-cohesion, delivering unique properties for comprehensive wound healing that are otherwise impossible to achieve using commercial variants. For the first time, a two-step controlled hydrothermal pyrolysis is reported to nanotize dopamine, phloroglucinol, and glutaraldehyde into carbon dot (CD) to be subsequently converted into carbonized polymer dot (CPD) with gelatin as a co-substrate. Chemical crosslinking of CD with gelatin through Schiff base formation before the second pyrolysis step ensures a complex yet porous polymeric network. The retention of chemical functionalities indigenous to CD substrates and gelatin along with the preservation of CD photoluminescence in CPD for optical tracking is achieved. A unique nanoformulation is created with the CPD through tannic acid (TA) grafting evolving CPD-TA nanoglue demonstrating ≈1.32 MPa strength in lap shear tests conducted on porcine skin, surpassing traditional bioadhesives. CPD-TA nanoglue uploaded insulin as chosen cargo disbursal at the wound site for healing normal and in vitro diabetic wound models using HEKa cells with extraordinary biocompatibility. Most importantly, CPD-TA can generate reactive oxygen species (ROS) and scavenge simultaneously under ambient conditions (23 W white LED or dark) for on-demand sterilization or aiding wound recovery through ROS scavenging.

10.
Small ; 20(24): e2309164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175832

RESUMO

Attempts are made to design a system for sustaining the delivery of copper ions into diabetic wounds and induce angiogenesis with minimal dose-dependent cytotoxicity. Here, a dual drug-delivery micro/nanofibrous core-shell system is engineered using polycaprolactone/sodium sulfated alginate-polyvinyl alcohol (PCL/SSA-PVA), as core/shell parts, by emulsion electrospinning technique to optimize sustained delivery of copper oxide nanoparticles (CuO NP). Herein, different concentrations of CuO NP (0.2, 0.4, 0.8, and 1.6%w/w) are loaded into the core part of the core-shell system. The morphological, biomechanical, and biocompatibility properties of the scaffolds are fully determined in vitro and in vivo. The 0.8%w/w CuO NP scaffold reveals the highest level of tube formation in HUVEC cells and also upregulates the pro-angiogenesis genes (VEGFA and bFGF) expression with no cytotoxicity effects. The presence of SSA and its interaction with CuO NP, and also core-shell structure sustain the release of the nanoparticles and provide a non-toxic microenvironment for cell adhesion and tube formation, with no sign of adverse immune response in vivo. The optimized scaffold significantly accelerates diabetic wound healing in a rat model. This study strongly suggests the 0.8%w/w CuO NP-loaded PCL/SSA-PVA as an excellent diabetic wound dressing with significantly improved angiogenesis and wound healing.


Assuntos
Cobre , Células Endoteliais da Veia Umbilical Humana , Nanofibras , Cicatrização , Cobre/química , Cicatrização/efeitos dos fármacos , Animais , Nanofibras/química , Humanos , Emulsões/química , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Alicerces Teciduais/química , Ratos , Nanopartículas/química , Masculino , Ratos Sprague-Dawley , Poliésteres/química , Angiogênese
11.
Small ; 20(22): e2308295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100287

RESUMO

Developing functional medical materials is urgent to treat diabetic wounds with a high risk of bacterial infections, high glucose levels and oxidative stress. Here, a smart copper-based nanocomposite acidic spray has been specifically designed to address this challenge. This copper-based nanocomposite is pH-responsive and has multienzyme-like properties. It enables the spray to effectively eliminate bacteria and alleviate tissue oxidative pressure, thereby accelerating the healing of infected diabetic wounds. The spray works by generating hydroxyl radicals through catalysing H2O2, which has a high sterilization efficiency of 97.1%. As alkaline micro-vessel leakage neutralizes the acidic spray, this copper-based nanocomposite modifies its enzyme-like activity to eliminate radicals. This reduces the level of reactive oxygen species in diabetic wounds by 45.3%, leading to a similar wound-healing effect between M1 diabetic mice and non-diabetic ones by day 8. This smart nanocomposite spray provides a responsive and regulated microenvironment for treating infected diabetic wounds. It also offers a convenient and novel approach to address the challenges associated with diabetic wound healing.


Assuntos
Cobre , Diabetes Mellitus Experimental , Polifenóis , Cicatrização , Cicatrização/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Animais , Camundongos , Polifenóis/farmacologia , Polifenóis/química , Nanocompostos/química , Infecções Bacterianas/tratamento farmacológico , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo
12.
Small ; : e2402723, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895951

RESUMO

The harsh environment of diabetic wounds, including bacterial infection and wound hypoxia, is not conducive to wound healing. Herein, an enzyme-like photocatalytic octahedral Rh/Ag2MoO4 is developed to manage diabetic-infected wounds. The introduction of Rh nanoparticles with catalase-like catalytic activity can enhance the photothermal conversion and photocatalytic performance of Rh/Ag2MoO4 by improving near-infrared absorbance and promoting the separation of electron-hole pairs, respectively. Rh/Ag2MoO4 can effectively eliminate pathogens through a combination of photothermal and photocatalytic antibacterial therapy. After bacteria inactivation, Rh/Ag2MoO4 can catalyze hydrogen peroxide to produce oxygen to alleviate the hypoxic environment of diabetic wounds. The in vivo treatment effect demonstrated the excellent therapeutic performance of Rh/Ag2MoO4 on diabetic infected wounds by removing infectious pathogens and relieving oxygen deficiency, confirming the potential application of Rh/Ag2MoO4 in the treatment of diabetic infected wounds.

13.
Small ; : e2400741, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837655

RESUMO

The accumulation of excessive reactive oxygen species (ROS) and recurrent infections with drug-resistant bacteria pose significant challenges in diabetic wound infections, often leading to impediments in wound healing. Addressing this, there is a critical demand for novel strategies dedicated to treating and preventing diabetic wounds infected with drug-resistant bacteria. Herein, 2D tantalum carbide nanosheets (Ta4C3 NSs) have been synthesized through an efficient and straightforward approach, leading to the development of a new, effective nanoplatform endowed with notable photothermal properties, biosafety, and diverse ROS scavenging capabilities, alongside immunogenic attributes for diabetic wound treatment and prevention of recurrent drug-resistant bacterial infections. The Ta4C3 NSs exhibit remarkable photothermal performance, effectively eliminating methicillin-resistant Staphylococcus aureus (MRSA) and excessive ROS, thus promoting diabetic wound healing. Furthermore, Ta4C3 NSs enhance dendritic cell activation, further triggering T helper 1 (TH1)/TH2 immune responses, leading to pathogen-specific immune memory against recurrent MRSA infections. This nanoplatform, with its significant photothermal and immunomodulatory effects, holds vast potential in the treatment and prevention of drug-resistant bacterial infections in diabetic wounds.

14.
Eur J Clin Invest ; 54(3): e14128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975307

RESUMO

INTRODUCTION: Diabetes mellitus (DM) impairs wound healing. The aim was to determine whether DM influences mitochondrial respiration in wounded skin (WS) and non-wounded skin (NWS), in a pre-clinical wound healing model of streptozotocin (STZ)-induced diabetes. METHODS: Six weeks after diabetes induction, two wounds were created in the back of C57BL/J6 mice. Using high-resolution respirometry (HRR), oxygen flux was measured, in WS and NWS, using two substrate-uncoupler-inhibitor titration protocols, at baseline (day 0), day 3 and 10 post-wounding, in STZ-DM and non-diabetic (NDM) mice. Flux control ratios for the oxidative phosphorylation (OXPHOS) capacity were calculated. RESULTS: A significant increase in mitochondrial respiration was observed in STZ-DM skin compared to control skin at baseline. The OXPHOS capacity was decreased in WS under diabetes at day 3 post-wounding (inflammation phase). However, at day 10 post-wounding (remodeling phase), the OXPHOS capacity was higher in WS from STZ-DM compared to NDM mice, and compared to NWS from STZ-DM mice. A significant relative contribution of pyruvate, malate and glutamate (PMG) oxidation to the OXPHOS capacity was observed in WS compared to NWS from STZ-DM mice, at day 10, while the relative contribution of fatty acid oxidation to the OXPHOS capacity was higher in NWS. The OXPHOS capacity is altered in WS from STZ-DM compared to NDM mice across the healing process, and so is the substrate contribution in WS and NWS from STZ-DM mice, at each time point. CONCLUSION: HRR may be a sensitive tool to evaluate the underlying mechanisms of tissue repair during wound healing.


Assuntos
Diabetes Mellitus Experimental , Fosforilação Oxidativa , Camundongos , Animais , Diabetes Mellitus Experimental/metabolismo , Projetos Piloto , Camundongos Endogâmicos C57BL , Pele/metabolismo
15.
Mol Pharm ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136964

RESUMO

Chronic diabetic wounds represent a significant clinical challenge because of impaired healing processes, which require innovative therapeutic strategies. This study explores the therapeutic efficacy of insulin-induced gene 1-induced bone marrow mesenchymal stem cell exosomes (Insig1-exos) in promoting wound healing in diabetic mice. We demonstrated that Insig1 enhanced the secretion of bone marrow mesenchymal stem cell-derived exosomes, which are enriched with miR-132-3p. Through a series of in vitro and in vivo experiments, these exosomes significantly promoted the proliferation, migration, and angiogenesis of dermal fibroblasts under high-glucose conditions. They also regulated key wound-healing factors, including matrix metalloproteinase-9, platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor-ß1, and platelet endothelial cell adhesion molecule-1, thereby accelerating wound closure in diabetic mice. Histological analysis showed that Insig1-exos were more effective in promoting epithelialization, enhancing collagen deposition, and reducing inflammation. Additionally, inhibition of miR-132-3p notably diminished these therapeutic effects, underscoring its pivotal role in the wound-healing mechanism facilitated by Insig1-exos. This study elucidates the molecular mechanisms through which Insig1-exos promotes diabetic wound healing, highlighting miR-132-3p as a key mediator. These findings provide new strategies and theoretical foundations for treating diabetes-related skin injuries.

16.
Mol Cell Biochem ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261238

RESUMO

The alteration of inflammatory phenotype by macrophage polarization plays an important role in diabetic wound repair. Apigenin has been reported to be anti-inflammatory and promote tissue repair; however, whether it regulates macrophage polarization to participate in diabetic wound repair remains to be investigated. We found that apigenin promoted miR-21 expression in LPS-stimulated RAW264.7 cells, inhibited cellular M1-type factor TNF-α and IL-1ß secretion and increased M2-type factor IL-10 and TGF-ß secretion, and accelerated macrophage conversion from M1 type to M2 type, whereas this protective effect of apigenin was counteracted by a miR-21 inhibitor. Moreover, we established a macrophage-HUVECs cell in vitro co-culture system and found that apigenin accelerated the migration, proliferation, and VEGF secretion of HUVECs by promoting macrophage miR-21 expression. Further, mechanistic studies revealed that this was mediated by the TLR4/Myd88/NF-κB axis. In in vivo study, diabetic mice had significantly delayed wound healing compared to non-diabetic mice, accelerated wound healing in apigenin-treated diabetic mice, and decreased M1-type macrophages and increased M2-type macrophages in wound tissues.

17.
J Surg Res ; 297: 63-70, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447337

RESUMO

INTRODUCTION: Diabetic foot ulcer (DFU) is a severe complication that threatens the daily lives of patients with diabetes and represents a serious challenge to the global health system. Considering that impaired wound healing is the leading cause of DFU, exploring the mechanism of diabetic wound healing is beneficial for improving DFU treatment. Resveratrol (RES) is a native polyphenol with various pharmacological characteristics, and recent studies have indicated an accelerated function of RES in diabetic wound healing. As human dermal fibroblasts (HDFs) play a significant role in diabetic wound healing, this study aimed to elucidate the regulatory mechanism of RES in HDFs. METHODS: To mimic diabetic wound healing in vitro, the HDFs were stimulated with high glucose (HG). Our findings revealed that RES reversed HG-induced suppression of HDF proliferation and migration caused by HG. RES inhibits the Notch signaling pathway. More importantly, we demonstrated that the activation of the Notch pathway abrogated the effects of RES on HG-induced HDFs. RESULTS: In vivo assays also illustrated that RES contributed to wound healing in diabetic mice by blocking the Notch pathway. CONCLUSIONS: In conclusion, RES improved diabetic wound healing by targeting the Notch pathway, which offers novel insights into DFU therapy.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Humanos , Camundongos , Animais , Resveratrol/farmacologia , Diabetes Mellitus Experimental/metabolismo , Cicatrização , Pele/metabolismo
18.
Wound Repair Regen ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022990

RESUMO

There is a lack of effective treatment options for diabetic refractory wounds, which presents a critical clinical issue that needs to be addressed urgently. Our research has demonstrated that human placenta-derived mesenchymal stem cells (plaMSCs) facilitate the migration and proliferation of HaCat cells, thereby enhancing diabetic wound healing primarily via the exosomes derived from plaMSCs (plaMSCs-Ex). Using label-free proteomics, plaMSCs and their exosomes were analysed for proteome taxonomic content in order to explore the underlying effective components mechanism of plaMSCs-Ex in diabetic wound healing. Differentially expressed proteins enriched in plaMSCs-Ex were identified and underwent bioinformatics analysis including GO annotation, KEGG pathway enrichment, gene set enrichment analysis (GSEA) and protein-protein interaction analysis (PPI). Results showed that the proteins enriched in plaMSCs-Ex are significantly involved in extracellular matrix organisation, epithelium morphogenesis, cell growth, adhesion, proliferation and angiogenesis. PPI analysis filtered 2 wound healing-related clusters characterised by hub proteins such as POSTN, FN1, SPARC, TIMP1, SERPINE1, LRP1 and multiple collagens. In brief, the exosomal proteins derived from plaMSCs reveal diverse functions of regeneration and tissue remodelling based on proteomics analysis and potentially play a role in diabetic wound healing.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38825036

RESUMO

OBJECTIVE: Pedal acceleration time (PAT) is a novel non-invasive perfusion measurement that may be useful in the management of patients with ulceration and gangrene. The objective of this study was to report the association between PAT and wound healing, amputation free survival (AFS), and mortality at one year. METHODS: This prospective observational study reviewed all patients who underwent PAT after presentation with ulceration or gangrene from 1 January 2020 to 30 June 2022. PAT was defined as the time (in milliseconds) from the onset of systole to the peak of systole in the mid artery. The final PAT of a limb was used to assess outcomes (presenting PAT if no revascularisation, or post-revascularisation PAT). Wound healing, major limb amputation, and death at one year were collected. Healing was assessed with Fine-Gray competing risks model, AFS via logistic regression, and survival using Cox proportional hazards model. RESULTS: Overall, 265 patients (307 limbs) were included. The median patient age was 71 years and 74.0% (196/265) had diabetes mellitus. Patient demographics were similar among the final PAT category cohorts. Compared with a final PAT category 1, analysis of one year outcomes showed that the final PAT categories 2 - 4 had lower wound healing (category 2, hazard ratio [HR] 0.62, 95% confidence interval [CI] 0.43 - 0.9, p = .012; category 3, HR 0.21, 95% CI 0.08 - 0.58, p = .002; category 4, HR 0.12, 95% CI 0.04 - 0.34, p < .001), lower AFS (category 2, odds ratio [OR] 2.86, 95% CI 1.64 - 5.0, p < .001; category 3, OR 5.1, 95% CI 1.71 - 15.22, p = .003; category 4, OR 12.59, 95% CI 4.34 - 36.56, p < .001), and lower survival (category 2, HR 1.89, 95% CI 1.17 - 3.03, p =.009; category 3, HR 2.37, 95% CI 1.05 - 5.36, p = .039; category 4, HR 4.52, 95% CI 2.48 - 8.21, p < .001). CONCLUSION: The final PAT measurement is associated with wound healing, AFS, and death at one year. PAT may be a valuable tool to assess perfusion of the foot.

20.
Virus Genes ; 60(1): 80-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38079060

RESUMO

Diabetic patients are more susceptible to developing wound infections resulting in poor and delayed wound healing. Bacteriophages, the viruses that target-specific bacteria, can be used as an alternative to antibiotics to eliminate drug-resistant bacterial infections. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are among the most frequently identified pathogens in diabetic foot ulcers (DFUs). The aim of this study was assessment of bacteriophage and gentamicin combination effects on bacterial isolates from DFU infections. Specific bacteriophages were collected from sewage and animal feces samples and the phages were enriched using S. aureus and P. aeruginosa cultures. The lytic potential of phage isolates was assessed by the clarity of plaques. We isolated and characterized four lytic phages: Stp2, Psp1, Stp1, and Psp2. The phage cocktail was optimized and investigated in vitro. We also assessed the effects of topical bacteriophage cocktail gel on animal models of DFU. Results revealed that the phage cocktail significantly reduced the mortality rate in diabetic infected mice. We determined that treatment with bacteriophage cocktail effectively decreased bacterial colony counts and improved wound healing in S. aureus and P. aeruginosa infections, especially when administrated concomitantly with gentamicin. The application of complementary therapy using a phage cocktail and gentamicin, could offer an attractive approach for the treatment of wound diabetic bacterial infections.


Assuntos
Bacteriófagos , Diabetes Mellitus , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Camundongos , Animais , Staphylococcus aureus , Pseudomonas aeruginosa , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia , Modelos Animais de Doenças , Diabetes Mellitus/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA