Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 897
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(13): 3338-3356.e30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810644

RESUMO

Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.


Assuntos
Diapausa , Animais , Evolução Biológica , Diapausa/genética , Embrião não Mamífero/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peixes Listrados/genética , Peixes Listrados/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Peixes/genética , Masculino , Feminino
2.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417860

RESUMO

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Diapausa , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Células Clonais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603796

RESUMO

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Assuntos
Diapausa , Nutrientes , Animais , Feminino , Camundongos , Blastocisto/metabolismo , Diapausa/fisiologia , Desenvolvimento Embrionário/fisiologia
4.
Proc Natl Acad Sci U S A ; 121(36): e2407057121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39196619

RESUMO

Winter diapause in insects is commonly terminated through cold exposure, which, like vernalization in plants, prevents development before spring arrives. Currently, quantitative understanding of the temperature dependence of diapause termination is limited, likely because diapause phenotypes are generally cryptic to human eyes. We introduce a methodology to tackle this challenge. By consecutively moving butterfly pupae of the species Pieris napi from several different cold conditions to 20 °C, we show that diapause termination proceeds as a temperature-dependent rate process, with maximal rates at relatively cold temperatures and low rates at warm and extremely cold temperatures. Further, we show that the resulting thermal reaction norm can predict P. napi diapause termination timing under variable temperatures. Last, we show that once diapause is terminated in P. napi, subsequent development follows a typical thermal performance curve, with a maximal development rate at around 31 °C and a minimum at around 2 °C. The sequence of these thermally distinct processes (diapause termination and postdiapause development) facilitates synchronous spring eclosion in nature; cold microclimates where diapause progresses quickly do not promote fast postdiapause development, allowing individuals in warmer winter microclimates to catch up, and vice versa. The unveiling of diapause termination as one temperature-dependent rate process among others promotes a parsimonious, quantitative, and predictive model, wherein winter diapause functions both as an adaptation against premature development during fall and winter and for synchrony in spring.


Assuntos
Borboletas , Estações do Ano , Temperatura , Borboletas/fisiologia , Animais , Diapausa de Inseto/fisiologia , Temperatura Baixa , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Modelos Biológicos , Diapausa/fisiologia
5.
Proc Natl Acad Sci U S A ; 121(27): e2400964121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917005

RESUMO

To survive adverse environments, many animals enter a dormant state such as hibernation, dauer, or diapause. Various Drosophila species undergo adult reproductive diapause in response to cool temperatures and/or short day-length. While flies are less active during diapause, it is unclear how adverse environmental conditions affect circadian rhythms and sleep. Here we show that in diapause-inducing cool temperatures, Drosophila melanogaster exhibit altered circadian activity profiles, including severely reduced morning activity and an advanced evening activity peak. Consequently, the flies have a single activity peak at a time similar to when nondiapausing flies take a siesta. Temperatures ≤15 °C, rather than photoperiod, primarily drive this behavior. At cool temperatures, flies rapidly enter a deep-sleep state that lacks the sleep cycles of flies at higher temperatures and require high levels of stimulation for arousal. Furthermore, we show that at 25 °C, flies prefer to siesta in the shade, a preference that is virtually eliminated at 10 °C. Resting in the shade is driven by an aversion to blue light that is sensed by Rhodopsin 7 outside of the eyes. Flies at 10 °C show neuronal markers of elevated sleep pressure, including increased expression of Bruchpilot and elevated Ca2+ in the R5 ellipsoid body neurons. Therefore, sleep pressure might overcome blue light aversion. Thus, at the same temperatures that cause reproductive arrest, preserve germline stem cells, and extend lifespan, D. melanogaster are prone to deep sleep and exhibit dramatically altered, yet rhythmic, daily activity patterns.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila , Drosophila melanogaster , Rodopsina , Sono , Animais , Drosophila melanogaster/fisiologia , Sono/fisiologia , Ritmo Circadiano/fisiologia , Rodopsina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fotoperíodo , Temperatura , Luz , Diapausa de Inseto/fisiologia
6.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990942

RESUMO

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Assuntos
Besouros , Lipogênese , Estações do Ano , Animais , Lipogênese/fisiologia , Besouros/metabolismo , Besouros/genética , Besouros/fisiologia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Diapausa de Inseto , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
7.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883062

RESUMO

Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.


Assuntos
Diapausa , Animais , Diapausa/fisiologia , Implantação do Embrião/genética , Transdução de Sinais , Metabolismo Energético
8.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37218457

RESUMO

Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.


Assuntos
Drosophila melanogaster , Hormônios de Inseto , Animais , Feminino , Corpora Allata , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Hormônios Juvenis , Neurônios , Hormônios de Inseto/genética , Hormônios de Inseto/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Reprodução
9.
Proc Natl Acad Sci U S A ; 120(1): e2215214120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574695

RESUMO

In Lepidoptera and Diptera, the fat body dissociates into single cells in nondiapause pupae, but it does not dissociate in diapause pupae until diapause termination. Using the cotton bollworm, Helicoverpa armigera, as a model of pupal diapause insects, we illustrated the catalytic mechanism and physiological importance of fat body cell dissociation in regulating pupal development and diapause. In nondiapause pupae, cathepsin L (CatL) activates matrix metalloproteinases (Mmps) that degrade extracellular matrix proteins and cause fat body cell dissociation. Mmp-induced fat body cell dissociation activates lipid metabolism through transcriptional regulation, and the resulting energetic supplies increase brain metabolic activity (i.e., mitochondria respiration and insulin signaling) and thus promote pupal development. In diapause pupae, low activities of CatL and Mmps prevent fat body cell dissociation and lipid metabolism from occurring, maintaining pupal diapause. Importantly, as demonstrated by chemical inhibitor treatments and CRISPR-mediated gene knockouts, Mmp inhibition delayed pupal development and moderately increased the incidence of pupal diapause, while Mmp stimulation promoted pupal development and moderately averted pupal diapause. This study advances our recent understanding of fat body biology and insect diapause regulation.


Assuntos
Diapausa de Inseto , Mariposas , Animais , Pupa/metabolismo , Corpo Adiposo/metabolismo , Metabolismo dos Lipídeos , Mariposas/genética , Metaloproteinases da Matriz/metabolismo
10.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394033

RESUMO

Diapause arrest in animals such as Caenorhabditis elegans is tightly regulated so that animals make appropriate developmental decisions amidst environmental challenges. Fully understanding diapause requires mechanistic insight of both entry and exit from the arrested state. Although a steroid hormone pathway regulates the entry decision into C. elegans dauer diapause, its role in the exit decision is less clear. A complication to understanding steroid hormonal regulation of dauer has been the peculiar fact that steroid hormone mutants such as daf-9 form partial dauers under normal growth conditions. Here, we corroborate previous findings that daf-9 mutants remain capable of forming full dauers under unfavorable growth conditions and establish that the daf-9 partial dauer state is likely a partially exited dauer that has initiated but cannot complete the dauer exit process. We show that the steroid hormone pathway is both necessary for and promotes complete dauer exit, and that the spatiotemporal dynamics of steroid hormone regulation during dauer exit resembles that of dauer entry. Overall, dauer entry and dauer exit are distinct developmental decisions that are both controlled by steroid hormone signaling.


Assuntos
Proteínas de Caenorhabditis elegans , Diapausa , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Hormônios/metabolismo , Larva/metabolismo , Mutação/genética , Esteroides/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(49): e2210404119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442095

RESUMO

Diapause is a form of dormancy used widely by insects to survive adverse seasons. Previous studies have demonstrated that forkhead box O (FoxO) is activated during pupal diapause initiation in the moth Helicoverpa armigera. However, it is unclear how FoxO induces diapause. Here, we show that knockout of FoxO causes H. armigera diapause-destined pupae to channel into nondiapause, indicating that FoxO is a master regulator that induces insect diapause. FoxO activates the ubiquitin-proteasome system (UPS) by promoting ubiquitin c (Ubc) expression via directly binding to the Ubc promoter. Activated UPS decreases transforming growth factor beta (TGFß) receptor signaling via ubiquitination to block developmental signaling to induce diapause. This study significantly advances the understanding of insect diapause by uncovering the detailed molecular mechanism of FoxO.


Assuntos
Diapausa de Inseto , Diapausa , Animais , Fator de Crescimento Transformador beta , Pupa , Transdução de Sinais , Receptores de Fatores de Crescimento Transformadores beta , Ubiquitina , Complexo de Endopeptidases do Proteassoma
12.
Dev Dyn ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166847

RESUMO

BACKGROUND: Theory predicts that drought-resistant embryos with extended incubations are evolutionarily favored in environments with high mortality of larvae but safe for eggs. Here, we experimentally test, under common garden conditions, the effect of three incubation temperatures and media on embryonic developmental length, extended incubation out of the water, survival, metabolic rate, and hatching dynamics in the estuarine pupfish Garmanella pulchra. We also described the morphological changes of embryonic cortical structures related to air exposure. RESULTS: We found that embryos incubated out of water in low and medium temperatures present an extended incubation period beyond their hatching capability with a deep metabolic depression. Also, these embryos exhibited a hatching asynchrony not related to water availability. Embryos incubated at high temperatures did not show extended incubation, with decreased probability of survival out of water. Our morphological observations of the embryonic cortical structures reveal that the perivitelline space and hair-like filaments buffer the deleterious drought effects. CONCLUSIONS: Our results reveal that G. pulchra possesses life-history traits typical of two separate phenomena: delay hatching and diapause; supporting a true continuum between them, rather than a dichotomy. The evolution of these traits may respond to aerial exposure during low tides in the estuaries of Yucatán they inhabit.

13.
Dev Biol ; 504: 38-48, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739119

RESUMO

The copepod species Acartia tonsa (Dana)(Crustacea) have the unique ability to induce quiescent embryonic dormancy if adverse environmental conditions occur; a characteristic shared by 41 other species belonging to the superfamily Centropagoida in the Calanoida order. However, the transcriptional changes characterizing this process are not known. Here, we compare the transcriptome of embryos in arrested quiescence with the normal development to identify pathways and differentially regulated transcripts involved in quiescent embryogenesis. Quiescence was induced by incubating eggs at 4 °C with anoxia for 26 h(hr), while eggs undergoing normal immediate development were incubated at 16.9 °C in normoxia for 7 h (where gastrulation occurs) or 14 h (where organogenesis occurs) before collecting for RNA extraction and analysis by RNA-sequencing. Results indicate that the expression profile of the quiescent embryo is not as different from the normal embryonic gastrulation as initially expected: None of the mapped transcripts is uniquely expressed in quiescence. Moreover, in quiescence a large proportion of the annotated transcripts display expression values halfway in-between the normal, immediate developmental stages of gastrulation and organogenesis. In depth comparison between the organogenesis stage and quiescent samples, reveal a high degree of divergence, confirming that a developmental arrest has been induced through quiescence. Specifically: Stress response transcripts are prominent in the quiescent phase with a transcript like the mammalian autophagy gene Sequestosome-1/p62 (SQSTM) being upregulated. The present analysis provides a better understanding of the molecular mechanisms characterizing the quiescent embryonic state of A. tonsa.


Assuntos
Copépodes , Animais , Copépodes/genética , Copépodes/metabolismo , Desenvolvimento Embrionário/genética , Gastrulação , Transcriptoma/genética , RNA/metabolismo , Mamíferos/genética
14.
Curr Issues Mol Biol ; 46(4): 3676-3693, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38666959

RESUMO

Artemia is a widely distributed small aquatic crustacean, renowned for its ability to enter a state of embryonic diapause. The embryonic diapause termination (EDT) is closely linked to environmental cues, but the precise underlying mechanisms remain elusive. In this study, ATAC-seq and RNA-seq sequencing techniques were employed to explore the gene expression profiles in Artemia cysts 30 min after EDT. These profiles were compared with those during diapause and 5 h after EDT. The regulatory mechanisms governing the EDT process were analyzed through Gene Ontology (GO) enrichment analysis of differentially expressed genes. Furthermore, the active G-protein-coupled receptors (GPCRs) were identified through structural analysis. The results unveiled that the signaling transduction during EDT primarily hinges on GPCRs and the cell surface receptor signaling pathway, but distinct genes are involved across different stages. Hormone-mediated signaling pathways and the tachykinin receptor signaling pathway exhibited heightened activity in the '0-30 min' group, whereas the Wnt signaling pathway manifested its function solely in the '30 min-5 h' group. These results imply a complete divergence in the mechanisms of signal regulation during these two stages. Moreover, through structural analysis, five GPCRs operating at different stages of EDT were identified. These findings provide valuable insights into the signal regulation mechanisms governing Artemia diapause.

15.
Biochem Biophys Res Commun ; 734: 150609, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39232459

RESUMO

RAB family proteins, which are small GTPases, are integral to the process of eukaryotic membrane trafficking. In the nematode, Caenorhabditis elegans, 31 RAB proteins have been identified through genome sequencing. Using an RNAi screen specifically targeting C. elegans rab genes, we identified multiple genes that are involved in the regulation of larval development, in particular, the rab-18 gene. Our molecular genetic studies resulted in several findings. First, RAB-18 predominantly functions in the intestine to regulate larval development by modulating steroid hormone signaling. Second, the C. elegans cholesterol transporter NCR-1 is a target of RAB-18 in the intestine. Third, the membrane trafficking of NCR-1 to the apical side in intestinal cells is particularly influenced by RAB-18. Finally, RAB-18 and NCR-1 possibly co-localize on membrane vesicles. Our study is the first to demonstrate the relationship between a RAB protein and a cholesterol transporter, in which the RAB protein probably drives the transporter to the apical membrane in the intestine to regulate cholesterol uptake. This study provides insight into the molecular mechanisms underlying human disease stemming from a transport defect of cholesterol and its derivative.

16.
Proc Biol Sci ; 291(2016): 20231860, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351804

RESUMO

Understanding mechanisms that promote the maintenance of biodiversity (genetic and species diversity) has been a central topic in evolution and ecology. Previous studies have revealed that diapause can contribute to coexistence of competing genotypes or species in fluctuating environments via the storage effect. However, they tended to focus on differences in reproductive success (e.g. seed yield) and diapause termination (e.g. germination) timing. Here we tested whether different photoperiodic responses in diapause induction can promote coexistence of two parthenogenetic (asexual) genotypes of Daphnia pulex in Lake Fukami-ike, Japan. Through laboratory experiments, we confirmed that short day length and low food availability induced the production of diapausing eggs. Furthermore, we found that one genotype tended to produce diapausing eggs in broader environmental conditions than the other. Terminating parthenogenetic reproduction earlier decreases total clonal production, but the early diapausing genotype becomes advantageous by assuring reproduction in 'short' years where winter arrival is earlier than usual. Empirically parameterized theoretical analyses suggested that different photoperiodic responses can promote coexistence via the storage effect with fluctuations of the growing season length. Therefore, timing of diapause induction may be as important as diapause termination timing for promoting the maintenance of genetic diversity in fluctuating environments.


Assuntos
Daphnia pulex , Diapausa , Animais , Ritmo Circadiano/fisiologia , Fotoperíodo , Variação Genética , Daphnia/genética
17.
Mol Ecol ; : e17348, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597329

RESUMO

Organisms inhabiting highly seasonal environments must cope with a wide range of environmentally induced challenges. Many seasonal challenges require extensive physiological modification to survive. In winter, to survive extreme cold and limited resources, insects commonly enter diapause, which is an endogenously derived dormant state associated with minimized cellular processes and low energetic expenditure. Due to the high degree of complexity involved in diapause, substantial cellular regulation is required, of which our understanding primarily derives from the transcriptome via messenger RNA expression dynamics. Here we aim to advance our understanding of diapause by investigating microRNA (miRNA) expression in diapausing and direct developing pupae of the butterfly Pieris napi. We identified coordinated patterns of miRNA expression throughout diapause in both head and abdomen tissues of pupae, and via miRNA target identification, found several expression patterns to be enriched for relevant diapause-related physiological processes. We also identified two candidate miRNAs, miR-14-5p and miR-2a-3p, that are likely involved in diapause progression through their activity in the ecdysone pathway, a critical regulator of diapause termination. miR-14-5p targets phantom, a gene in the ecdysone synthesis pathway, and is upregulated early in diapause. miR-2a-3p has been found to be expressed in response to ecdysone, and is upregulated during diapause termination. Together, the expression patterns of these two miRNAs match our current understanding of the timing of hormonal regulation of diapause in P. napi and provide interesting candidates to further explore the mechanistic role of microRNAs in diapause regulation.

18.
Mol Ecol ; 33(13): e17425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847383

RESUMO

Annual rhythms are observed in living organisms with numerous ecological implications. In the zooplanktonic copepod Calanus finmarchicus, such rhythms are crucial regarding its phenology, body lipid accumulation, and global carbon storage. Climate change drives annual biological rhythms out of phase with the prevailing environmental conditions with yet unknown but potentially catastrophic consequences. However, the molecular dynamics underlying phenology are still poorly described. In a rhythmic analysis of C. finmarchicus annual gene expression, results reveal that more than 90% of the transcriptome shows significant annual rhythms, with abrupt and dramatic upheaval between the active and diapause life cycle states. This work explores the implication of the circadian clock in the annual timing, which may control epigenetic mechanisms to profoundly modulate gene expression in response to calendar time. Results also suggest an increased light sensitivity during diapause that would ensure the photoperiodic entrainment of the endogenous annual clock.


Assuntos
Relógios Circadianos , Copépodes , Diapausa , Transcriptoma , Animais , Copépodes/genética , Copépodes/fisiologia , Diapausa/genética , Relógios Circadianos/genética , Fotoperíodo , Estações do Ano , Mudança Climática , Zooplâncton/genética , Ritmo Circadiano/genética
19.
Mol Ecol ; 33(4): e17249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38133544

RESUMO

Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.


Assuntos
Diapausa , Cifozoários , Animais , Cifozoários/genética , Temperatura , Diapausa/genética
20.
Insect Mol Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989821

RESUMO

Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA