Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111128

RESUMO

Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.


Assuntos
Ecossistema , Florestas , Humanos , Árvores , Brasil , Biodiversidade
2.
Proc Biol Sci ; 291(2020): 20232768, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565154

RESUMO

Prior research on metacommunities has largely focused on snapshot surveys, often overlooking temporal dynamics. In this study, our aim was to compare the insights obtained from metacommunity analyses based on a spatial approach repeated over time, with a spatio-temporal approach that consolidates all data into a single model. We empirically assessed the influence of temporal variation in the environment and spatial connectivity on the structure of metacommunities in tropical and Mediterranean temporary ponds. Employing a standardized methodology across both regions, we surveyed multiple freshwater taxa in three time periods within the same hydrological year from multiple temporary ponds in each region. To evaluate how environmental, spatial and temporal influences vary between the two approaches, we used nonlinear variation partitioning analyses based on generalized additive models. Overall, this study underscores the importance of adopting spatio-temporal analytics to better understand the processes shaping metacommunities. While the spatial approach suggested that environmental factors had a greater influence, our spatio-temporal analysis revealed that spatial connectivity was the primary driver influencing metacommunity structure in both regions. Temporal effects were equally important as environmental effects, suggesting a significant role of ecological succession in metacommunity structure.


Assuntos
Água Doce , Lagoas , Clima , Análise Espaço-Temporal , Ecossistema
3.
Mol Ecol ; 33(21): e17529, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39290075

RESUMO

Ectomycorrhizal (ECM) fungi are important tree symbionts within forests. The biogeography of ECM fungi remains to be investigated because it is challenging to observe and identify species. Because most ECM plant taxa have a Holarctic distribution, it is difficult to evaluate the extent to which host preference restricts the global distribution of ECM fungi. To address this issue, we aimed to assess whether host preference enhances the endemism of ECM fungi that inhabit dipterocarp rainforests. Highly similar sequences of 175 operational taxonomic units (OTUs) for ECM fungi that were obtained from Lambir Hill's National Park, Sarawak, Malaysia, were searched for in a nucleotide sequence database. Using a two-step binomial model, the probability of presence for the query OTUs and the registration rate of barcode sequences in each country were simultaneously estimated. The results revealed that the probability of presence in the respective countries increased with increasing species richness of Dipterocarpaceae and decreasing geographical distance from the study site (i.e. Lambir). Furthermore, most of the ECM fungi were shown to be endemic to Malaysia and neighbouring countries. These findings suggest that not only dispersal limitation but also host preference are responsible for the high endemism of ECM fungi in dipterocarp rainforests. Moreover, host preference likely determines the areas where ECM fungi potentially expand and dispersal limitation creates distance-decay patterns within suitable habitats. Although host preference has received less attention than dispersal limitation, our findings support that host preference has a profound influence on the global distribution of ECM fungi.


Assuntos
Micorrizas , Floresta Úmida , Micorrizas/genética , Micorrizas/classificação , Malásia , Dipterocarpaceae/microbiologia , Código de Barras de DNA Taxonômico , Especificidade de Hospedeiro , Simbiose/genética , Filogenia , Árvores/microbiologia
4.
Mol Ecol ; 33(22): e17540, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39377248

RESUMO

Although patterns of population genomic variation are well-studied in animals, there remains room for studies that focus on non-model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome-wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within- and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small-bodied taxa. We also predicted greater genetic differentiation in small-bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation-by-distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species-rich animal clade.


Assuntos
Genética Populacional , Filogenia , Polimorfismo de Nucleotídeo Único , Aranhas , Animais , Aranhas/genética , Aranhas/classificação , Polimorfismo de Nucleotídeo Único/genética , Variação Genética , Tamanho Corporal/genética
5.
J Evol Biol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824405

RESUMO

Coevolution can occur because of species interactions. However, it remains unclear how coevolutionary processes translate into the accumulation of species richness over macroevolutionary timescales. Assuming speciation occurs as a result of genetic differentiation across space due to dispersal limitation, we examine the effects of coevolution-induced phenotypic selection on species diversification. Based on the idea that dispersers often carry novel phenotypes, we propose and test two hypotheses. (1) Stability hypothesis: selection against phenotypic novelty enhances species diversification by strengthening dispersal limitation. (2) Novelty hypothesis: selection for phenotypic novelty impedes species diversification by weakening dispersal limitation. We simulate clade co-diversification using an individual-based model, considering scenarios where phenotypic selection is shaped by neutral dynamics, mutualistic coevolution, or antagonistic coevolution, where coevolution operates through trait matching or trait difference, and where the strength of coevolutionary selection is symmetrical or asymmetrical. Our key assumption that interactions occur between an independent party (whose individuals can establish or persist independently, e.g. hosts) and a dependent party (whose individuals cannot establish or persist independently, e.g. parasites or obligate mutualists) yields two contrasting results. The stability hypothesis is supported in the dependent clade but not in the independent clade. Conversely, the novelty hypothesis is supported in the independent clade but not in the dependent clade. These results are partially corroborated by empirical dispersal data, suggesting that these mechanisms might potentially explain the diversification of some of the most species-rich clades in the Tree of Life.

6.
J Anim Ecol ; 93(8): 1123-1134, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38877697

RESUMO

Metacommunity processes have the potential to determine most features of the community structure. However, species diversity has been the dominant focus of studies. Nestedness, modularity and checkerboard distribution of species occurrences are main components of biodiversity organisation. Within communities, these patterns emerge from the interaction between functional diversity, spatial heterogeneity and resource availability. Additionally, the connectivity determines the pool of species for community assembly and, eventually, the pattern of species co-occurrence within communities. Despite the recognised theoretical expectations, the change in occurrence patterns within communities along ecological gradients has seldom been considered. Here, we analyse the spatial occurrence of animal species along sampling units within 18 temporary ponds and its relationship with pond environments and geographic isolation. Isolated ponds presented a nested organisation of species with low spatial segregation-modularity and checkerboard-and the opposite was found for communities with high connectivity. A pattern putatively explained by high functional diversity in ponds with large connectivity and heterogeneity, which determines that species composition tracks changes in microhabitats. On the contrary, nestedness is promoted in dispersal-limited communities with low functional diversity, where microhabitat filters mainly affect richness without spatial replacement between functional groups. Vegetation biomass promotes nestedness, probably due to the observed increase in spatial variance in biomass with the mean biomass. Similarly, the richness of vegetation reduced the spatial segregation of animals within communities. This result may be due to the high plant diversity of the pond that is observed similarly along all sampling units, which promotes the spatial co-occurrence of species at this scale. In the study system, the spatial arrangement of species within communities is related to local drivers as heterogeneity and metacommunity processes by means of dispersal between communities. Patterns of species co-occurrence are interrelated with community biodiversity and species interactions, and consequently with most functional and structural properties of communities. These results indicate that understanding the interplay between metacommunity processes and co-occurrence patterns is probably more important than previously thought to understand biodiversity assembly and functioning.


Los procesos metacomunitarios tienen el potencial de determinar la mayoría de las características de la estructura de las comunidades. Sin embargo, los trabajos se han enfocado principalmente en los patrones de diversidad de especies. El anidamiento, la modularidad y la distribución en damero de la ocurrencia espacial de las especies son propiedades básicas de las comunidades. Estos patrones surgen de la interacción entre la diversidad funcional, la heterogeneidad espacial y la disponibilidad de recursos dentro de las comunidades. Además, el pool de especies disponibles para el ensamblaje está determinado por la conectividad de la comunidad, afectando así su patrón de co­ocurrencia de especies. A pesar de las reconocidas expectativas teóricas, el cambio en los patrones de ocurrencia dentro de las comunidades a lo largo de gradientes ecológicos ha sido poco considerado. Aquí, analizamos la ocurrencia espacial de especies animales dentro de 18 charcos temporales y su relación con las características ambientales y el aislamiento geográfico de los charcos. Los charcos aislados presentaron alto anidamiento espacial mientras que los charcos de alta conectividad una distribución de ocurrencias modular y en damero. Por un lado, la baja diversidad funcional en charcos aislados, determinaría que los filtros microambientales afecten la riqueza de especies sin reemplazo espacial entre grupos funcionales, promoviendo un arreglo anidado de ocurrencias. Por otro lado, la alta diversidad funcional en charcos con alta conectividad y heterogeneidad permitiría el reemplazo espacial de especies en gradientes microambientales, determinando los patrones de segregación observados. La biomasa vegetal promueve el anidamiento, probablemente debido al aumento observado en la variación espacial de la biomasa con la biomasa media. La riqueza vegetal también redujo la segregación espacial de los animales dentro de las comunidades. Este resultado puede deberse a que la alta diversidad de plantas de los charcos es también observada a nivel de unidades muestreales, favoreciendo esto la coexistencia espacial de especies. El arreglo espacial de especies dentro de las comunidades estudiadas estaría determinado tanto por factores locales como la heterogeneidad, como por procesos regionales operando a través de la dispersión de individuos entre comunidades. Los patrones de co­ocurrencia de especies están interrelacionados con la diversidad comunitaria y las interacciones bióticas, y consecuentemente con la mayoría de las propiedades estructurales y funcionales de las comunidades. Este estudio evidencia la importancia de la conexión entre procesos metacomunitarios y la co­ocurrencia espacial de especies para comprender el ensamblaje y funcionamiento de la biodiversidad.


Assuntos
Biodiversidade , Lagoas , Animais , Ecossistema , Biomassa
7.
Environ Res ; 255: 119174, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763284

RESUMO

In near-natural basins, zooplankton are key hubs for maintaining aquatic food webs and organic matter cycles. However, the spatial patterns and drivers of zooplankton in streams are poorly understood. This study registered 165 species of zooplankton from 147 sampling sites (Protozoa, Rotifers, Cladocera and Copepods), integrating multiple dimensions (i.e., taxonomic, functional, and phylogenetic) and components (i.e., total, turnover, and nestedness) of α and ß diversity. This study aims to reveal spatial patterns, mechanisms, correlations, and relative contribution of abiotic factors (i.e., local environment, geo-climatic, land use, and spatial factors) through spatial interpolation (ordinary kriging), mantel test, and variance partitioning analysis (VPA). The study found that α diversity is concentrated in the north, while ß diversity is more in the west, which may be affected by typical habitat, hydrological dynamics and underlying mechanisms. Taxonomic and phylogenetic ß diversity is dominated by turnover, and metacommunity heterogeneity is the result of substitution of species and phylogeny along environmental spatial gradients. Taxonomic and phylogenetic ß diversity were strongly correlated (r from 0.91 to 0.95), mainly explained by historical/spatial isolation processes, community composition, generation time, and reproductive characteristics, and this correlation provides surrogate information for freshwater conservation priorities. In addition, spatial factors affect functional and phylogenetic α diversity (26%, 28%), and environmental filtering and spatial processes combine to drive taxonomic α diversity (10%) and phylogenetic ß diversity (11%). Studies suggest that spatial factors are key to controlling the community structure of zooplankton assemblages in near-natural streams, and that the relative role of local environments may depend on the dispersal capacity of species. In terms of diversity conservation, sites with high variation in uniqueness should be protected (i) with a focus on the western part of the thousand islands lake catchment and (ii) increasing effective dispersal between communities to facilitate genetic and food chain transmission.


Assuntos
Biodiversidade , Rios , Zooplâncton , Animais , Zooplâncton/classificação , Filogenia , Ecossistema
8.
J Environ Manage ; 368: 122120, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173297

RESUMO

Over the past century, grassland and forest ecosystems globally have been heavily influenced by land-use changes driven by diverse socioeconomic activities. Ski resorts are a modern land-use type associated with biodiversity loss in mountain ecosystems worldwide. Below the treeline, by contrast, some ski slopes have been shown to provide suboptimal semi-natural habitats for native grassland plants and animals, depending on specific construction and management practices. We compared environmental factors and grassland vegetation between two types of ski slopes in central Japan with different land-use histories: slopes constructed on old pastures (pasture slopes) and slopes constructed by clearing secondary forests or larch plantations established on abandoned pastures during the 1940s-1990s (forest slopes). We examined the effects of land-use history and machine grading as well as other environmental factors on ski slope vegetation, including total species richness and the richness of native, endangered, and exotic plants, using a total of 108 plots of 2 m × 10 m. Compared to pasture slopes, forest slopes exhibited significantly lower richness of native grassland species, including endangered species. Forest slopes were more graded than pasture slopes, resulting in lower native and higher exotic grassland species richness. A significantly lower duration of direct sunlight on forest slopes than on pasture slopes likely decreased endangered species richness. The lower species richness on forest slopes may be also caused by seed dispersal limitations. Our findings demonstrate that ski slopes have good potential to support numerous native grassland plant species, including endangered species, but this potential is significantly and negatively affected by forest use history and concomitant environmental changes. The conservation of semi-natural conditions on pasture slopes as habitats for native grassland species can be promoted through the maintenance of annual mowing practices, avoidance of machine grading, and wider ski courses.


Assuntos
Biodiversidade , Florestas , Pradaria , Conservação dos Recursos Naturais , Japão , Ecossistema , Plantas
9.
Ecol Lett ; 26(6): 908-918, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37042097

RESUMO

Seed limitation can narrow down the number of coexisting plant species, limit plant community productivity, and also constrain community responses to changing environmental and biotic conditions. In a 10-year full-factorial experiment of seed addition, fertilisation, warming and herbivore exclusion, we tested how seed addition alters community richness and biomass, and how its effects depend on seed origin and biotic and abiotic context. We found that seed addition increased species richness in all treatments, and increased plant community biomass depending on nutrient addition and warming. Novel species, originally absent from the communities, increased biomass the most, especially in fertilised plots and in the absence of herbivores, while adding seeds of local species did not affect biomass. Our results show that seed limitation constrains both community richness and biomass, and highlight the importance of considering trophic interactions and soil nutrients when assessing novel species immigrations and their effects on community biomass.


Assuntos
Biodiversidade , Sementes , Biomassa , Plantas , Herbivoria/fisiologia
10.
Am Nat ; 201(4): 574-585, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36957999

RESUMO

AbstractCommunity trait assembly, the formation of distributions of phenotypic characteristics across coexisting species, can occur via two main processes: filtering of trait distributions from the regional pool and in situ phenotypic evolution in local communities. But the relative importance of these processes remains unclear, largely because of the difficulty in determining the timing of evolutionary trait changes and biogeographic dispersal events in phylogenies. We assessed evolutionary and biogeographic transitions in woody plant species across the Indo-Malay archipelago, a series of island groups where the same plant lineages interact with different seed disperser and seed predator assemblages. Fruit size in 2,650 taxa spanning the angiosperm tree of life tended to be smaller in the Sulawesi and Maluku island groups, where frugivores are less diverse and smaller bodied, than in the regional source pool. While numerous plant lineages (not just small-fruited ones) reached the isolated islands, colonists tended to be the smaller-fruited members of each clade. Nearly all of the evolutionary transitions to smaller fruit size predated, often substantially, organismal dispersal to the islands. Our results suggest that filtering rather than within-island evolution largely determined the distribution of fruit sizes in these regions.


Assuntos
Magnoliopsida , Dispersão de Sementes , Frutas , Sementes , Plantas , Filogenia , Magnoliopsida/genética
11.
Proc Biol Sci ; 290(1990): 20221904, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629107

RESUMO

Global change drivers (e.g. climate and land use) affect the species and functional traits observed in a local site but also its dark diversity-the set of species and traits locally suitable but absent. Dark diversity links regional and local scales and, over time, reveals taxa under expansion lags by depicting the potential biodiversity that remains suitable but is absent locally. Since global change effects on biodiversity are both spatially and temporally scale dependent, examining long-term temporal dynamics in observed and dark diversity would be relevant to assessing and foreseeing biodiversity change. Here, we used sedimentary pollen data to examine how both taxonomic and functional observed and dark diversity changed over the past 14 500 years in northern Europe. We found that taxonomic and functional observed and dark diversity increased over time, especially after the Late Glacial and during the Late Holocene. However, dark diversity dynamics revealed expansion lags related to species' functional characteristics (dispersal limitation and stress intolerance) and an extensive functional redundancy when compared to taxa in observed diversity. We highlight that assessing observed and dark diversity dynamics is a promising tool to examine biodiversity change across spatial scales, its possible causes, and functional consequences.


Assuntos
Características de História de Vida , Plantas , Biodiversidade , Pólen , Europa (Continente) , Ecossistema
12.
Glob Ecol Biogeogr ; 32(7): 1046-1058, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504871

RESUMO

Aim: Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle. Location: Central and south-eastern Europe. Time period: 17,100 BP - present. Major taxa studied: Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger. Methods: We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges. Results: We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs. Main conclusions: Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.

13.
Microb Ecol ; 86(2): 1164-1175, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36502425

RESUMO

Numerous rare species coexist with a few abundant species in microbial communities and together play an essential role in riparian ecosystems. Relatively little is understood, however, about the nature of assembly processes of these communities and how they respond to a fluctuating environment. In this study, drivers controlling the assembly of abundant and rare subcommunities for bacteria and archaea in a riparian zone were determined, and their resulting patterns on these processes were analyzed. Abundant and rare bacteria and archaea showed a consistent variation in the community structure along the riparian elevation gradient, which was closely associated with flooding frequency. The community assembly of abundant bacteria was not affected by any measured environmental variables, while soil moisture and ratio of submerged time to exposed time were the two most decisive factors determining rare bacterial community. Assembly of abundant archaeal community was also determined by these two factors, whereas rare archaea was significantly associated with soil carbon-nitrogen ratio and total carbon content. The assembly process of abundant and rare bacterial subcommunities was driven respectively by dispersal limitation and variable selection. Undominated processes and dispersal limitation dominated the assembly of abundant archaea, whereas homogeneous selection primarily driven rare archaea. Flooding may therefore play a crucial role in determining the community assembly processes by imposing disturbances and shaping soil niches. Overall, this study reveals the assembly patterns of abundant and rare communities in the riparian zone and provides further insight into the importance of their respective roles in maintaining a stable ecosystem during times of environmental perturbations.


Assuntos
Ecossistema , Microbiota , Solo , Microbiologia do Solo , Bactérias/genética , Archaea , Carbono
14.
Environ Res ; 223: 115470, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775088

RESUMO

Even in the vertical dimension, soil bacterial communities are spatially distributed in a distance-decay relationship (DDR). However, whether this pattern is universal among all soil microbial taxonomic groups, and how body size influences this distribution, remains elusive. Our study consisted of obtaining 140 soil samples from two adjacent ecosystems in the Yellow River Delta (YRD), both nontidal and tidal, and measuring the DDR between topsoil and subsoil for bacteria, archaea, fungi and protists (rhizaria). Our results showed that the entire community generally fitted the DDR patterns (P < 0.001), this was also true at the kingdom level (P < 0.001, with the exception of the fungal community), and for most individual phyla (47/75) in both ecosystems and with soil depth. Meanwhile, these results presented a general trend that the community turnover rate of nontidal soils was higher than tidal soils (P < 0.05), and that the rate of topsoil was also higher than that of subsoil (P < 0.05). Additionally, microbial spatial turnover rates displayed a negative relationship with body sizes in nontidal topsoil (R2 = 0.29, P = 0.009), suggesting that the smaller the body size of microorganisms, the stronger the spatial limitation was in this environment. However, in tidal soils, the body size effect was negligible, probably owing to the water's fluidity. Moreover, community assembly was judged to be deterministic, and heterogeneous selection played a dominant role in the different environments. Specifically, the spatial distance was much more influential, while the soil salinity in these ecosystems was the major environmental factor in selecting the distributions of microbial communities. Overall, this study revealed that microbial community compositions at different taxonomic levels followed relatively consistent distribution patterns and mechanisms in this coastal area.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Solo , Microbiologia do Solo
15.
Environ Res ; 233: 116447, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331554

RESUMO

Aerobic CH4-oxidizing bacteria (methanotrophs) represent a biological model system for the removal of atmospheric CH4, which is sensitive to the dynamics of water tables. However, little attention has been given to the turnover of methanotrophic communities across wet and dry periods in riparian wetlands. Here, by sequencing the pmoA gene, we investigated the turnover of soil methanotrophic communities across wet and dry periods in typical riparian wetlands that experience intensive agricultural practices. The results demonstrated that the methanotrophic abundance and diversity were significantly higher in the wet period than in the dry period, probably owing to the climatic seasonal succession and associated variation in soil edaphic factors. The co-occurrence patterns of the interspecies association analysis demonstrated that the key ecological clusters (i.e., Mod#1, Mod#2, Mod#4, Mod#5) showed contrasting correlations with soil edaphic properties between wet and dry periods. The linear regression slope of the relationships between the relative abundance of Mod#1 and the carbon to nitrogen ratio was higher in the wet period than in the dry period, whereas the linear regression slope of the relationships between the relative abundance of Mod#2 and soil nitrogen content (i.e., dissolved organic nitrogen, nitrate, and total nitrogen) was higher in the dry period than in the wet period. Moreover, Stegen's null model combined with phylogenetic group-based assembly analysis demonstrated that the methanotrophic community exhibited a higher proportion of drift (55.0%) and a lower contribution of dispersal limitation (24.5%) in the wet period than in the dry period (43.8% and 35.7%, respectively). Overall, these findings demonstrate that the turnover of methanotrophic communities across wet and dry periods were soil edaphic factors and climate dependent.


Assuntos
Solo , Áreas Alagadas , Filogenia , Microbiologia do Solo , Nitrogênio , Metano
16.
Ecol Lett ; 25(7): 1711-1724, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35616424

RESUMO

Beta(ß)-diversity, or site-to-site variation in species composition, generally decreases with increasing latitude, and the underlying processes driving this pattern have been challenging to elucidate because the signals of community assembly processes are scale-dependent. In this meta-analysis, by synthesising the results of 103 studies that were distributed globally and conducted at various spatial scales, we revealed a latitudinal gradient in the detectable assembly processes of vascular plant communities. Variations in plant community composition at low and high latitudes were mainly explained by geographic variables, suggesting that distance decay and dispersal limitations causing spatial aggregation are influential in these regions. In contrast, variation in species composition correlated most strongly with environmental variables at mid-latitudes (20-30°), reflecting the importance of environmental filtering, although this unimodal pattern was not statistically significant. Importantly, our analysis revealed the effects of different spatial scales, such that the correlation with spatial variables was stronger at smaller sampling extents, and environmental variables were more influential at larger sampling extents. We concluded that plant communities are driven by different community assembly processes in distinct biogeographical regions, suggesting that the latitudinal gradient of biodiversity is created by a combination of multiple processes that vary with environmental and species size differences.


Assuntos
Biodiversidade , Plantas
17.
Appl Environ Microbiol ; 88(13): e0048222, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695570

RESUMO

Microplastics provide new microbial niches in aquatic environments. Nevertheless, information on the assembly processes and potential ecological mechanisms of bacterial communities on microplastics from reservoirs is lacking. Here, we investigated the assembly processes and potential ecological mechanisms of bacterial communities on microplastics through full-length 16S rRNA sequencing in the Three Gorges Reservoir area of the Yangtze River, compared to water and sediment. The results showed that the Burkholderiaceae were the dominant composition of bacterial communities in microplastics (9.95%), water (25.14%), and sediment (7.22%). The niche width of the bacterial community on microplastics was lower than those in water and sediment. For the microplastics and sediment, distance-decay relationship results showed that the bacterial community similarity was significantly decreased with increasing geographical distance. In addition, the spatial turnover rate of the bacterial community on microplastics along the ~662-km reaches of the Yangtze River in the Three Gorges Reservoir area was higher than that in sediment. Null model analysis showed that the assembly processes of the bacterial community on microplastics were also different from those in water and sediments. Dispersal limitation (52.4%) was the primary assembly process of the bacterial community on microplastics, but variable selection was the most critical assembly process of the bacterial communities in water (47.6%) and sediment (66.7%). Thus, geographic dispersal limitation dominated the assembly processes of bacterial communities on microplastics. This study can enhance our understanding of the assembly mechanism of bacterial communities caused by the selection preference for microplastics from the surrounding environment. IMPORTANCE In river systems, microplastics create new microbial niches that significantly differ from those of the surrounding environment. However, the potential relationships between the biogeographic distribution and assembly processes of microbial communities on microplastics were still not well understood. This study could help us address the lack of knowledge about the assembly processes of bacterial communities on microplastics caused by selection from the surrounding environment. In this study, strong geographic dispersal limitation dominated assembly processes of bacterial communities on microplastics, compared to water and sediment, which may be responsible for the microplastic bacterial richness, and the niche distance was lower than those in water and sediment. In addition, sediment may be the main potential source of bacterial communities on microplastics in the Three Gorges Reservoir area, which makes higher community similarity between microplastics and sediment than between microplastics and water.


Assuntos
Microplásticos , Plásticos , Bactérias/genética , RNA Ribossômico 16S/genética , Água
18.
Mol Ecol ; 31(6): 1879-1891, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060231

RESUMO

Fungal species have numerous important environmental functions. Where these functions occur will depend on how fungi are spatially distributed, but the spatial structures of fungal communities are largely unknown, especially in understudied hyperdiverse tropical tree canopy systems. Here we explore fungal communities in a Costa Rican tropical rainforest canopy, with a focus on local-scale spatial structure and substrate specificity of fungi. Samples of ~1 cm3 were collected from 135 points along five adjacent tree branches, with intersample distances from 1 to 800 cm, and dissected into four substrates: outer host tree bark, inner bark, dead bryophytes and living bryophytes. We sequenced the ITS2 region to characterize total fungal communities. Fungal community composition and diversity varied among substrate types, even when multiple substrates were in direct contact. Fungi were most diverse in living bryophytes, with 39% of all operational taxonomic units (OTUs) found exclusively in this substrate, and the least diverse in inner bark. Fungal communities had significant positive spatial autocorrelation and distance decay of similarity only at distances less than 1 m. Similarity among samples declined by half in less than 10 cm, and even at these short distances, similarities were low with few OTUs shared among samples. These results indicate that community turnover is high and occurs at very small spatial scales, with any two locations sharing very few fungi in common. High heterogeneity of fungal communities in space and among substrates may have implications for the distributions, population dynamics and diversity of other tree canopy organisms, including epiphytic plants.


Assuntos
Micobioma , Biodiversidade , Fungos/genética , Micobioma/genética , Plantas/microbiologia , Floresta Úmida , Árvores
19.
Microb Ecol ; 84(1): 122-130, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34405252

RESUMO

Microbial communities, like their macro-organismal counterparts, assemble from multiple source populations and by processes acting at multiple spatial scales. However, the relative importance of different sources to the plant microbiome and the spatial scale at which assembly occurs remains debated. In this study, we analyzed how source contributions to the foliar fungal microbiome of a C4 grass differed between locally abundant plants and soils across an abiotic gradient at different spatial scales. Specifically, we used source-sink analysis to assess the likelihood that fungi in leaves from Panicum hallii came from three putative sources: two plant functional groups (C4 grasses and dicots) and soil. We expected that physiologically similar C4 grasses would be more important sources to P. hallii than dicots. We tested this at ten sites in central Texas spanning a steep precipitation gradient. We also examined source contributions at three spatial scales: individual sites (local), local plus adjacent sites (regional), or all sites (gradient-wide). We found that plants were substantially more important sources than soils, but contributions from the two plant functional groups were similar. Plant contributions overall declined and unexplained variation increased as mean annual precipitation increased. This source-sink analysis, combined with partitioning of beta-diversity into nestedness and turnover components, indicated high dispersal limitation and/or strong environmental filtering. Overall, our results suggest that the source-sink dynamics of foliar fungi are primarily local, that foliar fungi spread from plant-to-plant, and that the abiotic environment may affect fungal community sourcing both directly and via changes to host plant communities.


Assuntos
Micobioma , Panicum , Biodiversidade , Fungos/fisiologia , Plantas/microbiologia , Solo
20.
Oecologia ; 198(1): 193-203, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34853902

RESUMO

Understanding the direct and indirect effects of niche and neutral processes in structuring species diversity is particularly challenging because environmental factors are often geographically structured. Here, we used Structural Equation Modeling to quantify direct and indirect effects of geographic distance, the Amazon River's opposite margins, and environmental differences in temperature, precipitation, and vegetation density (Normalized Difference Vegetation Index-NDVI) on ant beta diversity (Jaccard's dissimilarity) across Amazon basin. We used a comprehensive survey of ground-dwelling ant species from 126 plots distributed across eight sampling sites along a broad environmental gradient. We found that geographic distance and NDVI differences were the major direct predictors of ant composition dissimilarity. The major indirect effect was that of temperature through NDVI, whereas precipitation neither had direct or indirect detectable effects on beta diversity. Thus, ant compositional dissimilarity seems to be mainly driven by a combination of isolation by distance (through dispersal limitation) and selection imposed by vegetation density, and indirectly, by temperature. Our results suggest that neutral and niche processes have been similarly crucial in driving the current beta diversity patterns of Amazonian ground-dwelling ants.


Assuntos
Formigas , Animais , Biodiversidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA