Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 413, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671348

RESUMO

BACKGROUND: Disulfidptosis is a novel form of programmed cell death induced by high SLC7A11 expression under glucose starvation conditions, unlike other known forms of cell death. However, the roles of disulfidptosis in cancers have yet to be comprehensively well-studied, particularly in ccRCC. METHODS: The expression profiles and somatic mutation of DGs from the TCGA database were investigated. Two DGs clusters were identified by unsupervised consensus clustering analysis, and a disulfidptosis-related prognostic signature (DR score) was constructed. Furthermore, the predictive capacity of the DR score in prognosis was validated by several clinical cohorts. We also developed a nomogram based on the DR score and clinical features. Then, we investigated the differences in the clinicopathological information, TMB, tumor immune landscapes, and biological characteristics between the high- and low-risk groups. We evaluated whether the DR score is a robust tool for predicting immunotherapy response by the TIDE algorithm, immune checkpoint genes, submap analysis, and CheckMate immunotherapy cohort. RESULTS: We identified two DGs clusters with significant differences in prognosis, tumor immune landscapes, and clinical features. The DR score has been demonstrated as an independent risk factor by several clinical cohorts. The high-risk group patients had a more complicated tumor immune microenvironment and suffered from more tumor immune evasion in immunotherapy. Moreover, patients in the low-risk group had better prognosis and response to immunotherapy, particularly in anti-PD1 and anti-CTLA-4 inhibitors, which were verified in the CheckMate immunotherapy cohort. CONCLUSION: The DR score can accurately predict the prognosis and immunotherapy response and assist clinicians in providing a personalized treatment regime for ccRCC patients.


Assuntos
Carcinoma de Células Renais , Imunoterapia , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Prognóstico , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Nomogramas , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Mutação , Apoptose
2.
Apoptosis ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115621

RESUMO

This study aims to investigate the role and prognostic significance of long non-coding RNAs (lncRNAs) associated with disulfidptosis in colon adenocarcinoma (COAD). The TCGA database's clinical data and transcriptome profiles were employed. Analysis of previous studies identified 10 disulfidptosis-related genes (DRGs). We used these genes to construct a signature that could independently and accurately predict the prognosis of patients with COAD. The Kaplan-Meier (K-M) curve analysis showed that the lower-risk group had a better prognosis. With the help of multivariate Cox regression analysis, the risk score produced from the patient's signature might independently predict the outcomes. Utilizing a nomogram, the receiver operating characteristic (ROC) curve, and principal component analysis (PCA), the signature's predictive ability was also confirmed. It's interesting to note that immunotherapy, especially PD-1 immune checkpoint suppression, was more likely to benefit low-risk patients. The IC50 levels for certain anticancer agents were lower in the high-risk group. Finally, qRT-PCR analyses in colon cancer cell lines revealed elevated levels of lncRNAs CASC9, ZEB1-AS1, ATP2A1-AS1, SNHG7, AL683813.1, and AP003555.1, and reduced levels of FAM160A1-DT and AC112220.2, compared to normal cell lines. This signature offers insights into prognosis, tumor microenvironment, and options for immunotherapy and antitumor drugs in patients with COAD.

3.
Apoptosis ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760515

RESUMO

Hepatocellular carcinoma (HCC) ranks as the second leading cause of cancer-related deaths globally. Disulfidptosis is a newly identified form of regulated cell death that is induced by glucose starvation. However, the clinical prognostic characteristics of disulfidptosis-associated genes in HCC remain poorly understood. We conducted an analysis of the single-cell datasets GSE149614 and performed weighted co-expression network analysis (WGCNA) on the Cancer Genome Atlas (TCGA) datasets to identify the genes related to disulfidptosis. A prognostic model was constructed using univariate COX and Lasso regression. Survival analysis, immune microenvironment analysis, and mutation analysis were performed. Additionally, a nomogram associated with disulfidptosis-related signature was constructed to identify the prognosis of HCC patients. Patients with HCC in the TCGA and GSE14520 datasets were categorized using a disulfidptosis-related model, revealing significant differences in survival times between the high- and low-disulfidptosis groups. High-disulfidptosis patients exhibited increased expression of immune checkpoint-related genes, implying that immunotherapy and certain chemotherapies may be beneficial for them. Meanwhile, the ROC and decision curves analysis (DCA) indicated that the nomogram has satisfying prognostic efficacy. Moreover, the experimental results of GATM in this prognostic model indicated that GATM is low expressed in HCC tissues, and GATM knockdown promotes the proliferation and migration of HCC cells. By analyzing single-cell and bulk multi-omics sequencing data, we developed a prognostic signature related to disulfidptosis and explored the relationship between high- and low-disulfidptosis groups in HCC. This study offers a novel reference for gaining a deeper understanding of the role of disulfidptosis in HCC.

4.
Apoptosis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886311

RESUMO

Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.

5.
Apoptosis ; 29(5-6): 693-708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38296888

RESUMO

The role of disulfidptosis in kidney renal clear cell carcinoma (KIRC) remains unknown. This study investigated disulfidptosis-related biomarkers for KIRC prognosis prediction and individualized treatment. KIRC patients were clustered by disulfidptosis profiles. Differential expression analysis, survival models, and machine learning were used to construct the disulfidptosis-related prognostic signature (DRPS). Characterizations of the tumor immune microenvironment, genetic drivers, drug sensitivity, and immunotherapy response were explored according to the DRPS risk stratification. Markers included in the signature were validated using single-cell, spatial transcriptomics, quantitative RT-qPCR, and immunohistochemistry. In the discovery cohort, we unveiled two clusters of KIRC patients that differed significantly in disulfidptosis regulator expressions and overall survival (OS). After multiple feature selection steps, a DRPS prognostic model with four features (CHAC1, COL7A1, FOXM1, SHOX2) was constructed and validated. Combined with clinical factors, the model demonstrated robust performance in the discovery and external validation cohorts (5-year AUC = 0.793 and 0.846, respectively). KIRC patients with high-risk scores are characterized by inferior OS, less tumor purity, and increased infiltrations of fibroblasts, M1 macrophages, and B cells. High-risk patients also have higher frequencies of BAP1 and AHNAK2 mutation. Besides, the correlation between the DRPS score and the chemotherapy-response signature indicated the potential effect of Gefitinib for high-risk patients. Among the signature genes, FOXM1 is highly expressed in cycling tumor cells and exhibits spatial aggregation, while others are expressed sparsely within tumor samples. The DRPS model enables improved clinical management and personalized KIRC therapy. The identified biomarkers and immune characteristics offer new mechanistic insight into disulfidptosis in KIRC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Medicina de Precisão , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino , Transcriptoma
6.
J Gene Med ; 26(1): e3608, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897262

RESUMO

INTRODUCTION: Renal cell carcinoma (RCC) is a grave malignancy that poses a significant global health burden with over 400,000 new cases annually. Disulfidptosis, a newly discovered programmed cell death process, is linked to the actin cytoskeleton, which plays a vital role in maintaining cell shape and survival. The role of disulfidptosis is poorly depicted in the clear cell histologic variant of RCC (ccRCC). METHODS: Three sets of ccRCC cohorts, ICGC_RECA-EU (n = 91), GSE76207 (n = 32) and TCGA-KIRC (n = 607), were included in our study, the batch effect of which was removed using the "combat" function. Correlation was calculated using the "rcorr" function of the "Hmisc" package for Pearson analysis, which was visualized using the "pheatmap" package. Principal component analysis was performed by the "vegan" package, visualized using the "scatterplot3d" package. Long non-coding RNAs (lncRNAs) associated with disulfidptosis were screened out using least absolute shrinkage and selection operator (LASSO) and COX analysis. Tumor mutation, immune landscaping and immunotherapy prediction were performed for further characterization of two risk groups. RESULTS: A total of 1822 disulfidptosis-related lncRNAs was selected, among which 308 lncRNAs were found to be significantly associated with the clinical outcome of ccRCC patients. We retained 11 disulfidptosis-related lncRNAs, namely, AP000439.3, RP11-417E7.1, RP11-119D9.1, LINC01510, SNHG3, AC156455.1, RP11-291B21.2, EMX2OS, AC093850.2, HAGLR and RP11-389C8.2, through LASSO and COX analysis for prognosis model construction, which displayed satisfactory accuracy (area under the curve, AUC, values all above 0.6 in multiple cohorts) in stratification of ccRCC prognosis. A nomogram model was constructed by integrating clinical factors with risk score, which further enhanced the prediction efficacy (AUC values all above 0.7 in multiple cohorts). We found that patients of male gender, higher clinical stages and advanced pathological T stage were inclined to have higher risk score values. Dactinomycin_1911, Vinblastine_1004, Daporinad_1248 and Vinorelbine_2048 were identified as promising candidate drugs for treating ccRCC patients of higher risk score value. Moreover, patients of higher risk value were prone to be resistant to immunotherapy. CONCLUSION: We developed a prognosis predicting model based on 11 selected disulfidptosis-related lncRNAs, the efficacy of which was verified in different cohorts. Furthermore, we delineated an intricate portrait of tumor mutation, immune topography and pharmacosensitivity evaluations within disparate risk stratifications.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Masculino , Carcinoma de Células Renais/genética , RNA Longo não Codificante/genética , Prognóstico , Apoptose , Neoplasias Renais/genética
7.
Small ; 20(29): e2309842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1-weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.


Assuntos
Ferroptose , Imageamento por Ressonância Magnética , Ferroptose/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia de Imunossupressão , Microambiente Tumoral/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Feminino , Glutationa/metabolismo
8.
Cancer Cell Int ; 24(1): 183, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802854

RESUMO

PURPOSE: Metabolic reprogramming is a hallmark of cancer and plays a key role in precision oncology treatment. Long non-coding RNAs (lncRNAs) regulate cancer cell behavior, including metabolism. Disulfidptosis, a newly identified form of regulated cell death triggered by glucose starvation, has yet to be fully understood in colon adenocarcinoma (COAD). This study aimed to confirm the existence and role of disulfidptosis in COAD and identify disulfidptosis-related lncRNAs that may be targeted to induce disulfidptosis in COAD. METHODS: PI and F-actin staining were used to observe disulfidptosis in COAD cell lines. Disulfidptosis-related lncRNAs were identified based on the expression of disulfidptosis-associated genes in the TCGA-COAD database. A four-lncRNA signature for disulfidptosis was established. Subsequently, loss-of-function assays explored the roles of AC013652.1 and MCM3AP-AS1 in disulfidptosis. RESULTS: Disulfidptosis was observed in COAD cells under glucose starvation and could be reversed by agents that prevent disulfide stress, such as dithiothreitol (DTT) and tris-(2-carboxyethyl)-phosphine (TCEP). The prognostic value of disulfidptosis-associated genes in COAD patients was confirmed, with higher expression indicating longer survival. A disulfidptosis-related lncRNA signature comprising four lncRNAs was established based on the expression of these genes. Among these, AC013652.1 and MCM3AP-AS1 predicted worse prognoses. Furthermore, inhibiting AC013652.1 or MCM3AP-AS1 increased disulfidptosis-associated gene expression and cellular death, which could be reversed by DTT and TCEP. CONCLUSIONS: This study provides hitherto undocumented evidence of the existence of disulfidptosis and the prognostic value of disulfidptosis-associated genes in COAD. Importantly, we identified lncRNAs AC013652.1 and MCM3AP-AS1, which suppress disulfidptosis and may serve as potential therapeutic targets for COAD.

9.
Cancer Cell Int ; 24(1): 194, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831301

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly prevalent and deadly cancer, with limited treatment options for advanced-stage patients. Disulfidptosis is a recently identified mechanism of programmed cell death that occurs in SLC7A11 high-expressing cells due to glucose starvation-induced disintegration of the cellular disulfide skeleton. We aimed to explore the potential of disulfidptosis, as a prognostic and therapeutic marker in HCC. METHODS: We classified HCC patients into two disulfidptosis subtypes (C1 and C2) based on the transcriptional profiles of 31 disulfrgs using a non-negative matrix factorization (NMF) algorithm. Further, five genes (NEIL3, MMP1, STC2, ADH4 and CFHR3) were screened by Cox regression analysis and machine learning algorithm to construct a disulfidptosis scoring system (disulfS). Cell proliferation assay, F-actin staining and PBMC co-culture model were used to validate that disulfidptosis occurs in HCC and correlates with immunotherapy response. RESULTS: Our results suggests that the low disulfidptosis subtype (C2) demonstrated better overall survival (OS) and progression-free survival (PFS) prognosis, along with lower levels of immunosuppressive cell infiltration and activation of the glycine/serine/threonine metabolic pathway. Additionally, the low disulfidptosis group showed better responses to immunotherapy and potential antagonism with sorafenib treatment. As a total survival risk factor, disulfS demonstrated high predictive efficacy in multiple validation cohorts. We demonstrated the presence of disulfidptosis in HCC cells and its possible relevance to immunotherapeutic sensitization. CONCLUSION: The present study indicates that novel biomarkers related to disulfidptosis may serve as useful clinical diagnostic indicators for liver cancer, enabling the prediction of prognosis and identification of potential treatment targets.

10.
Cancer Cell Int ; 24(1): 19, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195525

RESUMO

BACKGROUND: Disulfidptosis is a type of programmed cell death caused by excessive cysteine-induced disulfide bond denaturation leading to actin collapse. Liver cancer has a poor prognosis and requires more effective intervention strategies. Currently, the prognostic and therapeutic value of disulfidptosis in liver cancer is not clear. METHODS: We investigated the features of 16 disulfidptosis-related genes (DRGs) of HCC patients in the TCGA and classified the patients into two disulfidptosis pattern clusters by consensus clustering analysis. Then, we constructed a prognostic model using LASSO Cox regression. Next, the microenvironment and drug sensitivity were evaluated. Finally, we used qPCR and functional analysis to verify the reliability of hub DRGs. RESULTS: Most of the DRGs showed significantly higher expression in cancer tissues than in adjacent tissues. Our prognostic model, the DRG score, can well predict the survival of HCC patients. There were significant differences in survival, features of the microenvironment, effects of immunotherapy, and drug sensitivity between the high- and low-DRG score groups. Ultimately, we demonstrated that a few hub DRGs have differential mRNA expression between liver cancer cells and normal cells and that the protective gene LCAT can inhibit liver cancer metastasis in vitro. CONCLUSION: We established a novel risk model based on DRG scores to predict HCC patient prognosis, drug sensitivity and immunotherapy efficacy, which provides new insight into the relationship between disulfidptosis and HCC and provides valuable assistance for the personalized treatment of HCC.

11.
Cancer Cell Int ; 24(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167017

RESUMO

BACKGROUND: Disulfidptosis is a recently proposed novel cell death mode in which cells with high SLC7A11 expression induce disulfide stress and cell death in response to glucose deficiency. The purpose of the research was to explore the function of disufidptosis and disulfide metabolism in the progression of lung adenocarcinoma (LUAD). METHODS: The RNA-seq data from TCGA were divided into high/low expression group on the base of the median expression of SLC7A11, and the characteristic of differentially expressed disulfide metabolism-related genes. Least absolute shrinkage and selection operator (LASSO) algorithm was conducted the disulfidptosis and disulfide metabolism risk index. The tumor mutation burden (TMB), mechanism, pathways, tumor microenvironment (TME), and immunotherapy response were assessed between different risk groups. The role of TXNRD1 in LUAD was investigated by cytological experiments. RESULTS: We established the risk index containing 5 genes. There are significant differences between different risk groups in terms of prognosis, TMB and tumor microenvironment. Additionally, the low-risk group demonstrated a higher rate of response immunotherapy in the prediction of immunotherapy response. Experimental validation suggested that the knockdown of TXNRD1 suppressed cell proliferation, migration, and invasion of LUAD. CONCLUSION: Our research highlights the enormous potential of disulfidptosis and disulfide metabolism risk index in predicting the prognosis of LUAD. And TXNRD1 has great clinical translational ability.

12.
Cancer Cell Int ; 24(1): 112, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528532

RESUMO

BACKGROUND: Gastric cancer (GC) remains a malignant tumor with high morbidity and mortality, accounting for approximately 1,080,000 diagnosed cases and 770,000 deaths worldwide annually. Disulfidptosis, characterized by the stress-induced abnormal accumulation of disulfide, is a recently identified form of programmed cell death. Substantial studies have demonstrated the significant influence of immune clearance on tumor progression. Therefore, we aimed to explore the intrinsic correlations between disulfidptosis and immune-related genes (IRGs) in GC, as well as the potential value of disulfidptosis-related immune genes (DRIGs) as biomarkers. METHODS: This study incorporated the single-cell RNA sequencing (scRNA-seq) dataset GSE183904 and transcriptome RNA sequencing of GC from the TCGA database. Disulfidptosis-related genes (DRGs) and IRGs were derived from the representative literature on both cell disulfidptosis and immunity. The expression and distribution of DRGs were investigated at the single-cell level in different GC cell types. Pearson correlation analysis was used to identify the IRGs closely related to disulfidptosis. The prognostic signature of DRIGs was established using Cox and LASSO analyses. We then analyzed and evaluated the differences in long-term prognosis, Gene Set Enrichment Analysis (GSEA), immune infiltration, mutation profile, CD274 expression, and response to chemotherapeutic drugs between the two groups. A tissue array containing 63 paired GC specimens was used to verify the expression of 4 DRIGs and disulfidptosis regulator SLC7A11 through immunohistochemistry staining. RESULTS: The scRNA-seq analysis found that SLC7A11, SLC3A2, RPN1 and NCKAP1 were enriched in specific cell types and closely related to immune infiltration. Four DIRGs (GLA, HIF-1α, VPS35 and CDC37) were successfully identified to establish a signature to potently predict the survival time of GC patients. Patients with high risk scores generally experienced worse prognoses and exhibited greater resistant to classical chemotherapy drugs. Furthermore, the expression of GLA, HIF-1α, VPS35, CDC37 and SLC7A11 were elevated in GC tissues. A high expression of GLA, HIF-1α, VPS35 or CDC37 was associated with more advanced clinical stage of GC and increased SLC7A11 expression. CONCLUSION: Current study first highlights the potential value of DRIGs as biomarkers in GC. We successfully constructed a robust model incorporating four DRIGs to accurately predict the survival time and clinicopathological characteristics of GC patients.

13.
Cancer Cell Int ; 24(1): 30, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218909

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) stands as a prevalent malignancy globally, characterized by significant morbidity and mortality. Despite continuous advancements in the treatment of HCC, the prognosis of patients with this cancer remains unsatisfactory. This study aims at constructing a disulfidoptosis­related long noncoding RNA (lncRNA) signature to probe the prognosis and personalized treatment of patients with HCC. METHODS: The data of patients with HCC were extracted from The Cancer Genome Atlas (TCGA) databases. Univariate, multivariate, and least absolute selection operator Cox regression analyses were performed to build a disulfidptosis-related lncRNAs (DRLs) signature. Kaplan-Meier plots were used to evaluate the prognosis of the patients with HCC. Functional enrichment analysis was used to identify key DRLs-associated signaling pathways. Spearman's rank correlation was used to elucidate the association between the DRLs signature and immune microenvironment. The function of TMCC1-AS1 in HCC was validated in two HCC cell lines (HEP3B and HEPG2). RESULTS: We identified 11 prognostic DRLs from the TCGA dataset, three of which were selected to construct the prognostic signature of DRLs. We found that the survival time of low-risk patients was considerably longer than that of high-risk patients. We further observed that the composition and the function of immune cell subpopulations were significantly different between high- and low-risk groups. Additionally, we identified that sorafenib, 5-Fluorouracil, and doxorubicin displayed better responses in the low-score group than those in the high-score group, based on IC50 values. Finally, we confirmed that inhibition of TMCC1-AS1 impeded the proliferation, migration, and invasion of hepatocellular carcinoma cells. CONCLUSIONS: The DRL signatures have been shown to be a reliable prognostic and treatment response indicator in HCC patients. TMCC1-AS1 showed potential as a novel prognostic biomarker and therapeutic target for HCC.

14.
BMC Cancer ; 24(1): 44, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191330

RESUMO

PURPOSE: Prostate cancer (PCa) is one of the major tumor diseases that threaten men's health globally, and biochemical recurrence significantly impacts its prognosis. Disulfidptosis, a recently discovered cell death mechanism triggered by intracellular disulfide accumulation leading to membrane rupture, is a new area of research in the context of PCa. Currently, its impact on PCa remains largely unexplored. This study aims to investigate the correlation between long non-coding RNAs (lncRNAs) associated with disulfidptosis and the prognosis of PCa, seeking potential connections between the two. METHODS: Transcriptomic data for a PCa cohort were obtained from the Cancer Genome Atlas database. Disulfidptosis-related lncRNAs (DDRLs) were identified through differential expression and Pearson correlation analysis. DDRLs associated with biochemical recurrence-free survival (BRFS) were precisely identified using univariate Cox and LASSO regression, resulting in the development of a risk score model. Clinical factors linked to BRFS were determined through both univariate and multivariate Cox analyses. A prognostic nomogram combined the risk score with key clinical variables. Model performance was assessed using Receiver Operating Characteristic (ROC) curves, Decision Curve Analysis (DCA), and calibration curves. The functional impact of a critical DDRL was substantiated through assays involving CCK8, invasion, migration, and cell cloning. Additionally, immunohistochemical (IHC) staining for the disulfidptosis-related protein SLC7A11 was conducted. RESULTS: The prognostic signature included AC026401.3, SNHG4, SNHG25, and U73166.1 as key components. The derived risk score from these signatures stood as one of the independent prognostic factor for PCa patients, correlating with poorer BRFS in the high-risk group. By combining the risk score with clinical variables, a practical nomogram was created, accurately predicting BRFS of PCa patients. Notably, silencing AC026401.3 significantly hindered PCa cell proliferation, invasion, migration, and colony formation. IHC staining revealed elevated expression of the dithiosulfatide-related protein SLC7A11 in tumor tissue. CONCLUSIONS: A novel prognostic signature for PCa DDRLs, possessing commendable predictive power, has been constructed, simultaneously providing potential therapeutic targets associated with disulfidptosis, among which AC026401.3 has been validated in vitro and demonstrated inhibition of PCa tumorigenesis after its silencing.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , Prognóstico , RNA Longo não Codificante/genética , Neoplasias da Próstata/genética , Nomogramas , Calibragem
15.
Pharmacol Res ; 206: 107258, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909638

RESUMO

Several cardiovascular illnesses are associated with aberrant activation of cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis, and macrophage polarisation as hallmarks contributing to vascular damage and abnormal cardiac function. Meanwhile, these three novel forms of cellular dysfunction are closely related to mitochondrial homeostasis. Mitochondria are the main organelles that supply energy and maintain cellular homeostasis. Mitochondrial stability is maintained through a series of regulatory pathways, such as mitochondrial fission, mitochondrial fusion and mitophagy. Studies have shown that mitochondrial dysfunction (e.g., impaired mitochondrial dynamics and mitophagy) promotes ROS production, leading to oxidative stress, which induces cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage M1 phenotypic polarisation. Therefore, an in-depth knowledge of the dynamic regulation of mitochondria during cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage polarisation is necessary to understand cardiovascular disease development. This paper systematically summarises the impact of changes in mitochondrial dynamics and mitophagy on regulating novel cellular dysfunctions and macrophage polarisation to promote an in-depth understanding of the pathogenesis of cardiovascular diseases and provide corresponding theoretical references for treating cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Macrófagos , Dinâmica Mitocondrial , Mitofagia , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/imunologia , Macrófagos/metabolismo , Animais , Apoptose , Mitocôndrias/metabolismo , Mitocôndrias/patologia
16.
BMC Womens Health ; 24(1): 6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166898

RESUMO

Breast cancer (BC) is a prominent cause of cancer incidence and mortality around the world. Disulfidptosis, a type of cell death, can induce tumor cell death. The purpose of this study was to analyze the potential impact of disulfidptosis-related genes (DRGs) on the prognosis and immune infiltration features of BC. Based on DRGs, we conducted an unsupervised clustering analysis on gene expression data of BC in TCGA-BRCA dataset and identified two BC subtypes, cluster1 and cluster2, with cluster1 showing a higher likelihood of favorable survival. Through immune analysis, we found that cluster1 had lower proportions of infiltration in immune-related cells, including aDCs, DCs, NK_cells, Th2_cells, and Treg. Based on the immunophenoscore (IPS) results, we inferred that cluster1 might benefit more from immune checkpoint inhibitors targeting CTLA-4 and PD1. Targeted small molecule prediction results showed that patients with cluster2 BC might respond better to antagonistic small molecule compounds, including clofazimine, lenalidomide, and epigallocatechin. Differentially expressed genes between the two subtypes were found to be enriched in signaling pathways related to steroid hormone biosynthesis, ovarian steroidogenesis, and neutrophil extracellular trap formation, according to enrichment analyses. In conclusion, this study identified BC subtypes based on DRGs so as to help predict patient prognosis and provide valuable tools for guiding clinical management and precise treatment of BC patients.


Assuntos
Neoplasias da Mama , Inibidores de Checkpoint Imunológico , Imunoterapia , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Análise por Conglomerados , Prognóstico , Expressão Gênica
17.
BMC Urol ; 24(1): 69, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532369

RESUMO

BACKGROUND: Bladder urothelial carcinoma (BLCA) is the most common malignancy of the urinary tract, presenting with a wide range of clinical symptoms and prognosis. Disulfidptosis is a newly identified cell death method and closely associated with BLCA progression, prognosis, and treatment outcome. Currently, we need to construct a new prognostic model for disulfidptosis-related long noncoding RNAs (drlncRNAs) to improve the treatment strategy of BLCA. METHODS: The data for BLCA samples were obtained from The Cancer Genome Atlas (TCGA), and then 10 unique genes related to disulfidoptosis (DRGs) were identified from research papers. The differences between the two groups showed in this study were used to create the "disulfidptosis-related long noncoding RNAs score" (disulfidptosis-score) prognostic model. RESULTS: We identified two groups of drlncRNAs with high and low disulfidptosis scores in this study. Patients with low disulfidptosis scores had a better overall survival rate compared to those with high scores in bladder cancer, and the high disulfidptosis score subtype exhibited more active malignant pathways related to cancer than the low score subtype. We found that the low disulfidptosis-score subgroup had better prognosis than the high disulfidptosis-score subgroup. The expression of mutation burden was much higher in the low disulfidptosis-score group than in the high disulfidptosis-score group. The low disulfidptosis-score subgroup of patients exhibited significantly higher proportions of plasma cells, T cells CD8, and Tregs, while the high-risk subgroup had a greater abundance of Macrophages M0 and Macrophages M2. The disulfidptosis-score showed a strong correlation with the sensitivity of chemotherapeutic drugs, and patients in the low disulfidptosis-score group were more likely to exhibit an immune response and respond positively to immunotherapy. Additionally, we developed a nomogram to enhance the accuracy of the disulfidptosis-clinical score. CONCLUSION: Based on our investigation of disulfidptosis-score in BLCA, disulfidptosis-score may have an important role in TME, prognosis, and drug sensitivity. We also investigated the significance of the disulfidoptosis-score in relation to immunotherapy and immune response, providing a basis for improving prognosis and responding to immunotherapy among patients with BLCA.


Assuntos
Carcinoma de Células de Transição , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Imunoterapia , Nomogramas , Plasmócitos , Prognóstico
18.
Oral Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696646

RESUMO

BACKGROUND: Head and neck squamous carcinoma (HNSC) is a prevalent global malignancy with limited treatment options, which necessitates the development of novel therapeutic strategies. Disulfidptosis, a recently discovered and unique cell death pathway, may offer promise as a treatment target in HNSC. MATERIALS AND METHODS: We identified disulfidptosis-related genes (DRGs) using multiple algorithms and developed a prognostic model based on a disulfidptosis-related gene index (DRGI). The model's predictive accuracy was assessed by ROC-AUC, and patients were stratified by risk scores. We investigated the tumor immune microenvironment, immune responses, tumorigenesis pathways, and chemotherapy sensitivity (IC50). We also constructed a diagnostic model using 20 machine-learning algorithms and validated PCBP2 expression through RT-qPCR and western blot. RESULTS: We developed a 12-DRG DRGI prognostic model, classifying patients into high- and low-risk groups, with the high-risk group experiencing poorer clinical outcomes. Notable differences in tumor immune microenvironment and chemosensitivity were observed, with reduced immune activity and suboptimal treatment responses in the high-risk group. Advanced machine learning and in-vitro experiments supported DRGI's potential as a reliable HNSC diagnostic biomarker. CONCLUSION: We established a novel DRGI-based prognostic and diagnostic model for HNSC, exploring its tumor immune microenvironment implications, and offering valuable insights for future research and clinical trials.

19.
Skin Res Technol ; 30(7): e13814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924611

RESUMO

BACKGROUND: Skin cutaneous melanoma (SKCM) is an aggressive form of malignant melanoma with poor prognosis and high mortality rates. Disulfidptosis is a newly discovered cell death regulatory mechanism caused by the abnormal accumulation of disulfides. This unique pathway is guiding significant new research to understand cancer progression for targeted treatment. However, the correlation between disulfidptosis with long non-coding RNAs (lncRNAs) in SKCM remains unknown at present. METHODS: The Cancer Genome Atlas database furnished lncRNA expression data and clinical information for SKCM patients. Pearson correlation and Cox regression analyses identified disulfidptosis-related lncRNAs associated with SKCM prognosis. ROC curves and a nomogram validated the model. TME, immune infiltration, GSEA analysis, immune checkpoint gene expression profiling, and drug sensitivity were assessed in high and low-risk groups. Consistent clustering categorized SKCM patients for personalized clinical treatment guidance. RESULTS: A total of twelve disulfidptosis-related lncRNAs were identified for the development of prognosis prediction models. The area under the curve (AUC) values of the ROC curve and the nomogram provided reliable discrimination to evaluate the prognostic potential for SKCM patients. The TME played a crucial role in tumorigenesis, progression and prognosis, and the risk scores were closely related to immune cell infiltration. Meanwhile, the combination of chemotherapy, targeted therapy, and immunotherapy was recommended for low-risk patients based on drug sensitivity and immune efficacy analyses. CONCLUSION: We identified a risk model of twelve disulfidptosis-related lncRNAs that could be used to predict the prognosis of SKCM patients and help guide immunotherapy and chemotherapy for personalized treatment plans.


Assuntos
Melanoma , RNA Longo não Codificante , Neoplasias Cutâneas , Microambiente Tumoral , Humanos , RNA Longo não Codificante/genética , Melanoma/genética , Melanoma/imunologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Nomogramas , Melanoma Maligno Cutâneo , Biomarcadores Tumorais/genética , Curva ROC
20.
Environ Toxicol ; 39(3): 1715-1728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050844

RESUMO

INTRODUCTION: Breast cancer remains the predominant cancer among females, accounting for about 24.2% of all cancer cases. Alarmingly, it is the primary cause of cancer-related mortality in women under 45. METHODS: This research analyzed RNA sequencing data from 1082 TCGA-BRCA and 107 GSE58812 breast cancer patients. Single-cell RNA data from five patients in the GSE118389 data set were also studied. Using Random forest and COX regression, we developed a prognostic model. Pathway analysis employed GSVA and GO, while immune profiles were assessed via ssGSEA and MCPcounter. Mutation patterns utilized maftools, and drug sensitivity scores were derived from the GDSC database with oncoPredict. RESULTS: Analysis of the GSE118389 data set identified three distinct cell types: immune, epithelial, and stromal. P53 and VEGF were notably enriched. Five key genes (TMEM251, ADAMTSL2, CDC123, PSMD1, TLE1) were pinpointed for their prognostic significance. We introduced a disulfidptosis-associated score as a novel risk factor for breast cancer prognosis. Survival outcomes varied significantly between training and validation sets. Comprehensive immune profiling revealed no difference in activated CD8-positive T cells between risk groups, but a positive correlation of NK cells, neutrophils, cytotoxic lymphocytes, and monocytic cells with the riskscore was noted. Importantly, a negative association between the drug Nelarabine and riskscore was identified. CONCLUSION: This research underscores the significance of a disulfidptosis-associated gene signature in breast cancer prognosis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Células Matadoras Naturais , Leucócitos , Proteínas ADAMTS
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA