RESUMO
Assessing within-species variation in response to drought is crucial for predicting species' responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species' responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited.
Assuntos
Secas , Chuva , Árvores , Clima Tropical , Árvores/fisiologia , Mudança Climática , Água/metabolismo , Plântula/genética , Plântula/fisiologia , Especificidade da Espécie , Florestas , Fluxo Gênico , Resistência à SecaRESUMO
As global climate change persists, ongoing warming exposes plants, including kiwifruit, to repeated cycles of drought stress and rewatering, necessitating the identification of drought-resistant genotypes for breeding purposes. To better understand the physiological mechanisms underlying drought resistance and recovery in kiwifruit, moderate (40-45% field capacity) and severe (25-30% field capacity) drought stresses were applied, followed by rewatering (80-85% field capacity) to eight kiwifruit rootstocks in this study. We then conducted a multivariate analysis of 20 indices for the assessment of drought resistance and recovery capabilities. Additionally, we identified four principal components, each playing a vital role in coping with diverse water conditions. Three optimal indicator groups were pinpointed, enhancing precision in kiwifruit drought resistance and recovery assessment and simplifying the evaluation system. Finally, MX-1 and HW were identified as representative rootstocks for future research on kiwifruit's responses to moderate and severe drought stresses. This study not only enhances our understanding of the response mechanisms of kiwifruit rootstocks to progressive drought stress and recovery but also provides theoretical guidance for reliable screening of drought-adaptive kiwifruit genotypes.
Assuntos
Actinidia , Resistência à Seca , Actinidia/genética , Actinidia/fisiologia , Resistência à Seca/genética , Frutas/genética , Frutas/fisiologia , Genótipo , Análise Multivariada , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Estresse Fisiológico/genéticaRESUMO
Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor-heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes-is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants.
Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Meristema/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Secas , Farnesiltranstransferase/genética , Proteínas de Choque Térmico HSP90/genética , Meristema/anatomia & histologia , MicroRNAs/metabolismo , Mutação , Prenilação , Transdução de Sinais , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.
Assuntos
Resistência à Seca , Elymus , Mapeamento Cromossômico , Cromossomos , Ácidos GraxosRESUMO
BACKGROUND: Focusing on key indicators of drought resistance is highly important for quickly mining candidate genes related to drought resistance in cotton. RESULTS: In the present study, drought resistance was identified in drought resistance-related RIL populations during the flowering and boll stages, and multiple traits were evaluated; these traits included three key indicators: plant height (PH), single boll weight (SBW) and transpiration rate (Tr). Based on these three key indicators, three groups of extreme mixing pools were constructed for BSA-seq. Based on the mapping interval of each trait, a total of 6.27 Mb QTL intervals were selected on chromosomes A13 (3.2 Mb), A10 (2.45 Mb) and A07 (0.62 Mb) as the focus of this study. Based on the annotation information and qRTâPCR analysis, three key genes that may be involved in the drought stress response of cotton were screened: GhF6'H1, Gh3AT1 and GhPER55. qRTâPCR analysis of parental and extreme germplasm materials revealed that the expression of these genes changed significantly under drought stress. Cotton VIGS experiments verified the important impact of key genes on cotton drought resistance. CONCLUSIONS: This study focused on the key indicators of drought resistance, laying the foundation for the rapid mining of drought-resistant candidate genes in cotton and providing genetic resources for directed molecular breeding of drought resistance in cotton.
Assuntos
Resistência à Seca , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Fenótipo , Secas , Gossypium/genéticaRESUMO
Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.
Assuntos
Resistência à Seca , Oryza , Oryza/metabolismo , Filogenia , Melhoramento Vegetal , Secas , GenômicaRESUMO
Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.
Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Resistência à Seca , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Secas , Aminoácidos/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.
Assuntos
Secas , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum , Triticum/genética , Triticum/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Haplótipos/genética , Característica Quantitativa Herdável , Adaptação Fisiológica/genética , Resistência à SecaRESUMO
Recent droughts have strongly impacted forest ecosystems and are projected to increase in frequency, intensity, and duration in the future together with continued warming. While evidence suggests that tree diversity can regulate drought impacts in natural forests, few studies examine whether mixed tree plantations are more resistant to the impacts of severe droughts. Using natural variations in leaf carbon (C) and nitrogen (N) isotopic ratios, that is δ13C and δ15N, as proxies for drought response, we analyzed the effects of tree species richness on the functional responses of tree plantations to the pan-European 2018 summer drought in seven European tree diversity experiments. We found that leaf δ13C decreased with increasing tree species richness, indicating less drought stress. This effect was not related to drought intensity, nor desiccation tolerance of the tree species. Leaf δ15N increased with drought intensity, indicating a shift toward more open N cycling as water availability diminishes. Additionally, drought intensity was observed to alter the influence of tree species richness on leaf δ15N from weakly negative under low drought intensity to weakly positive under high drought intensity. Overall, our findings suggest that dual leaf isotope analysis helps understand the interaction between drought, nutrients, and species richness.
Assuntos
Biodiversidade , Isótopos de Carbono , Secas , Isótopos de Nitrogênio , Folhas de Planta , Estações do Ano , Árvores , Folhas de Planta/fisiologia , Árvores/fisiologia , Isótopos de Carbono/análise , Europa (Continente) , Especificidade da EspécieRESUMO
The first year in a tree's life is characterized by distinct morphological changes, requiring constant adjustments of the hydraulic system. Despite their importance for the natural regeneration of forests and future vegetation composition, little has been known about the hydraulics of tree seedlings. At different times across the first growing season, we analysed xylem area-specific (Kshoot_Axyl) and leaf area-specific (Kshoot_L) shoot hydraulic conductance, as well as embolism resistance of three temperate conifer trees, two angiosperm trees and one angiosperm shrub, and related findings to cell osmotic parameters and xylem anatomical traits. Over the first 10 wk after germination, Kshoot_Axyl and Kshoot_L sharply decreased, then remained stable until the end of the growing season. Embolism resistance was remarkably low in the youngest stages but, coupled with an increase in cell wall reinforcement, significantly increased towards autumn. Contemporaneously, water potential at turgor loss and osmotic potential at saturation decreased. Independent of lineage, species and growth form, the transition from primary to secondary xylem resulted in a less efficient but increasingly more embolism-resistant hydraulic system, enabling stable water supply under increasing risk for low water potentials.
RESUMO
Adaptive responses to climate change, based on heritable variation in stress tolerance, may be important for plant population persistence. It is unclear which populations will mount the strongest future adaptive responses. It may be fruitful to identify populations that have escaped trade-offs among performance traits, which can hinder adaptation. Barring strong genetic constraints, the extent of trade-offs may depend on spatial relationships among climate variables shaping different traits. Here, we test for climate-driven ecotypic variation and trade-offs among drought and freezing sensitivity, and growth, for Lemmon's willow (Salix lemmonii) in a common garden study of 90 genotypes from 38 sites in the Sierra Nevada, USA. Salix lemmonii exhibits ecotypic variation in leaf turgor loss point, a measure of drought sensitivity, from -0.95 to -0.74 MPa along a gradient of spring snowpack. We also find variation in spring freezing sensitivity with minimum May temperature. However, we find no trade-off, as the climatic gradients shaping these traits are spatially uncorrelated in our study region, despite being negatively correlated across the Sierra Nevada. Species may escape adaptive trade-offs in geographic regions where climate variables are spatially decoupled. These regions may represent valuable reservoirs of heritable adaptive phenotypic variation.
Assuntos
Adaptação Fisiológica , Clima , Secas , Folhas de Planta , Salix , Salix/fisiologia , Salix/genética , Adaptação Fisiológica/genética , Folhas de Planta/fisiologia , Congelamento , Mudança Climática , Genótipo , California , GeografiaRESUMO
The Mediterranean alpine is one of the most vulnerable ecosystems under future environmental change. Yet, patterns, timing and environmental controls of plant growth are poorly investigated. We aimed at an improved understanding of growth processes, as well as stem swelling and shrinking patterns, by examining two common coexisting green-stemmed shrub species. Using dendrometers to measure daily stem diameter changes, we separated these changes into water-related shrinking and swelling and irreversible growth. Implementing correlation analysis, linear mixed effects models, and partial least squares regression on time series of stem diameter changes, with corresponding soil temperature and moisture data as environmental predictors, we found species-specific growth patterns related to different drought-adaptive strategies. We show that the winter-cold-adapted species Cytisus galianoi uses a drought tolerance strategy combined with a high ecological plasticity, and is, thus, able to gain competitive advantages under future climate warming. In contrast, Genista versicolor is restricted to a narrower ecological niche using a winter-cold escape and drought avoidance strategy, which might be of disadvantage in a changing climate. Pregrowth environmental conditions were more relevant than conditions during growth, controlling the species' resource availability. Thus, studies focusing on current driver constellations of growth may fail to predict a species' ecological niche and its potential future performance.
Assuntos
Clima , Ecossistema , Estações do Ano , Temperatura , Secas , Mudança ClimáticaRESUMO
Interspecific hybridization increases genetic diversity, which is essential for coping with changing environments. Hybrid zones, occurring naturally in overlapping habitats of closely related species, can be artificially established during afforestation. The resulting interspecific hybridization may promote sustainability in artificial forests, particularly in regions facing degradation due to climate change. Currently, there is limited evidence of hybridization during regeneration of artificial forests. Here, we studied the frequency of Pinus brutia Ten. × P. halepensis Mill. hybridization in five planted forests in Israel in three stages of forest regeneration: seeds before dispersal, emerged seedlings and recruited seedlings at the end of the dry season. We found hybrids on P. brutia, but not on P. halepensis trees due to asynchronous cone production phenology. Using 94 single-nucleotide polymorphism (SNP) markers, we found hybrids at all stages, most of which were hybrids of advanced generations. The hybrid proportions increased from 4.7 ± 2.1 to 8.2 ± 1.4 and 21.6 ± 6.4 per cent, from seeds to emerged seedlings and to recruited seedlings stages, respectively. The increased hybrid ratio implies an advantage of hybrids over P. brutia during forest regeneration. To test this hypothesis, we measured seedling growth rate and morphological traits under controlled conditions and found that the hybrid seedlings exhibited selected traits of the two parental species, which likely contributed to the fitness and survival of the hybrids during the dry season. This study highlights the potential contribution of hybrids to sustainable-planted forests and contributes to the understanding of genetic changes that occur during the regeneration of artificial forests.
Assuntos
Florestas , Hibridização Genética , Pinus , Polimorfismo de Nucleotídeo Único , Plântula , Pinus/genética , Pinus/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Israel , Conservação dos Recursos Naturais , Sementes/genética , Sementes/crescimento & desenvolvimento , Variação GenéticaRESUMO
The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.
Assuntos
Folhas de Planta , Caules de Planta , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Xilema/fisiologia , Xilema/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Lignina/metabolismo , Combretaceae/fisiologia , Combretaceae/crescimento & desenvolvimentoRESUMO
Drought is one of the most severe environmental factors limiting plant growth and crop yield, necessitating the identification of genes that enhance drought resistance for crop improvement. Through screening an ethyl methyl sulfonate-mutagenized rice mutant library, we isolated the PEG tolerance mutant 97-1 (ptm97-1), which displays enhanced resistance to osmotic and drought stress, and increased yield under drought conditions. A point mutation in OsMATE6 was identified as being associated with the drought-resistant phenotype of ptm97-1. The role of OsMATE6 in conferring drought resistance was confirmed by additional OsMATE6 knockout mutants. OsMATE6 is expressed in guard cells, shoots and roots and the OsMATE6-GFP fusion protein predominantly localizes to the plasma membrane. Our ABA efflux assays suggest that OsMATE6 functions as an ABA efflux transporter; mutant protoplasts exhibited a slower ABA release rate compared to the wild type. We hypothesize that OsMATE6 regulates ABA levels in guard cells, influencing stomatal closure and enhancing drought resistance. Notably, OsMATE6 knockout mutants demonstrated greater yields under field drought conditions compared to wild-type plants, highlighting OsMATE6 as a promising candidate for improving crop drought resistance.
RESUMO
Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.
Assuntos
Citrus , Raízes de Plantas , Xilema , Citrus/fisiologia , Xilema/fisiologia , Raízes de Plantas/fisiologia , Água/metabolismo , Secas , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/fisiologiaRESUMO
BACKGROUND AND AIMS: Root system architecture (RSA) plays a key role in plant adaptation to drought, because deep rooting enables better water uptake than shallow rooting under terminal drought. Understanding RSA during early plant development is essential for improving crop yields, because early drought can affect subsequent shoot growth. Herein, we demonstrate that root distribution in the topsoil significantly impacts shoot growth during the early stages of rice (Oryza sativa) development under drought, as assessed through three-dimensional image analysis. METHODS: We used 109 F12 recombinant inbred lines obtained from a cross between shallow-rooting lowland rice and deep-rooting upland rice, representing a population with diverse RSA. We applied a moderate drought during the early development of rice grown in a plant pot (25 cm in height) by stopping irrigation 14 days after sowing. Time-series RSA at 14, 21 and 28 days after sowing was visualized by X-ray computed tomography and, subsequently, compared between drought and well-watered conditions. After this analysis, we investigated drought-avoidant RSA further by testing 20 randomly selected recombinant inbred lines in drought conditions. KEY RESULTS: We inferred the root location that most influences shoot growth using a hierarchical Bayes approach: the root segment depth that impacted shoot growth positively ranged between 1.7 and 3.4 cm in drought conditions and between 0.0 and 1.7 cm in well-watered conditions. Drought-avoidant recombinant inbred lines had a higher root density in the lower layers of the topsoil compared with the others. CONCLUSIONS: Fine classification of soil layers using three-dimensional image analysis revealed that increasing root density in the lower layers of the topsoil, rather than in the subsoil, is advantageous for drought avoidance during the early growth stage of rice.
Assuntos
Secas , Imageamento Tridimensional , Oryza , Raízes de Plantas , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologiaRESUMO
Elevated leaf silicon (Si) concentrations improve drought resistance in cultivated plants, suggesting Si might also improve drought performance of wild species. Tropical tree species, for instance, take up substantial amounts of Si, and leaf Si varies markedly at local and regional scales, suggesting consequences for seedling drought resistance. Yet, whether elevated leaf Si improves seedling drought performance in tropical forests is unknown. To manipulate leaf Si concentrations, seedlings of seven tropical tree species were grown in Si-rich and -poor soil, before exposing them to drought in the forest understorey. Survival, growth and wilting were monitored. Elevated leaf Si did not improve drought survival and growth in any of the species. In one species, drought survival was reduced in seedlings previously grown in Si-rich soil, contrary to our expectation. Our results suggest that elevated leaf Si does not improve drought resistance of wild tropical tree species. Elevated leaf Si may even reduce drought performance, suggesting differences in soil conditions influencing leaf Si may contribute to soil-related variation of tropical seedling performance. Furthermore, our results are at odds with most studies on cultivated species and show that alleviative effects of Si in crops cannot be generalized to wild plants in natural systems.
Assuntos
Plântula , Árvores , Secas , Silício/farmacologia , Folhas de Planta , SoloRESUMO
Light quality not only directly affects the photosynthesis of green plants but also plays an important role in regulating the development and movement of leaf stomata, which is one of the key links for plants to be able to carry out normal growth and photosynthesis. By sensing changes in the light environment, plants actively regulate the expansion pressure of defense cells to change stomatal morphology and regulate the rate of CO2 and water vapor exchange inside and outside the leaf. In this study, Cucumis melo was used as a test material to investigate the mitigation effect of different red, blue, and green light treatments on short-term drought and to analyze its drought-resistant mechanism through transcriptome and metabolome analysis, so as to provide theoretical references for the regulation of stomata in the light environment to improve the water use efficiency. The results of the experiment showed that after 9 days of drought treatment, increasing the percentage of green light in the light quality significantly increased the plant height and fresh weight of the treatment compared to the control (no green light added). The addition of green light resulted in a decrease in leaf stomatal conductance and a decrease in reactive oxygen species (ROS) content, malondialdehyde MDA content, and electrolyte osmolality in the leaves of melon seedlings. It indicated that the addition of green light promoted drought tolerance in melon seedlings. Transcriptome and metabolome measurements of the control group (CK) and the addition of green light treatment (T3) showed that the addition of green light treatment not only effectively regulated the synthesis of abscisic acid (ABA) but also significantly regulated the hormonal pathway in the hormones such as jasmonic acid (JA) and salicylic acid (SA). This study provides a new idea to improve plant drought resistance through light quality regulation.
Assuntos
Cucumis melo , Secas , Luz , Estresse Fisiológico , Cucumis melo/fisiologia , Cucumis melo/metabolismo , Cucumis melo/efeitos da radiação , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Fotossíntese/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plântula/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Metaboloma , Luz Verde , Luz AzulRESUMO
Agropyron mongolicum Keng is a diploid perennial grass of triticeae in gramineae. It has strong drought resistance and developed roots that can effectively fix the soil and prevent soil erosion. GDSL lipase or esterases/lipase has a variety of functions, mainly focusing on plant abiotic stress response. In this study, a GDSL gene from A. mongolicum, designated as AmGDSL1, was successfully cloned and isolated. The subcellular localization of the AmGDSL1 gene (pCAMBIA1302-AmGDSL1-EGFP) results showed that the AmGDSL1 protein of A. mongolicum was only localized in the cytoplasm. When transferred into tobacco (Nicotiana benthamiana), the heterologous expression of AmGDSL1 led to enhanced drought tolerance. Under drought stress, AmGDSL1 overexpressing plants showed fewer wilting leaves, longer roots, and larger root surface area. These overexpression lines possessed higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and proline (PRO) activities. At the same time, the malondialdehyde (MDA) content was lower than that in wild-type (WT) tobacco. These findings shed light on the molecular mechanisms involved in the GDSL gene's role in drought resistance, contributing to the discovery and utilization of drought-resistant genes in A. mongolicum for enhancing crop drought resistance.