Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 3070-3091, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334507

RESUMO

Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens. The aim of this study was to establish the efficacy of OGs in protecting durum wheat (Triticum turgidum subsp. durum), which is characterized by an extreme susceptibility to Fusarium graminearum. To evaluate the functionality of OGs, spikes and seedlings of cv. Svevo were inoculated with OGs, F. graminearum spores, and a co-treatment of both. Results demonstrated that OGs are active elicitors of wheat defenses, triggering typical immune marker genes and determining regulation of fungal genes. Moreover, bioassays on spikes and transcriptomic analyses on seedlings showed that OGs can regulate relevant physiological processes in Svevo with dose-dependent specificity. Thus, the OG sensing system plays an important role in fine tuning immune signaling pathways in durum wheat.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/imunologia , Triticum/genética , Triticum/fisiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
2.
J Exp Bot ; 75(11): 3412-3430, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400803

RESUMO

There is a need to generate improved crop varieties adapted to the ongoing changes in the climate. We studied durum wheat canopy and central metabolism of six different photosynthetic organs in two yield-contrasting varieties. The aim was to understand the mechanisms associated with the water stress response and yield performance. Water stress strongly reduced grain yield, plant biomass, and leaf photosynthesis, and down-regulated C/N-metabolism genes and key protein levels, which occurred mainly in leaf blades. By contrast, higher yield was associated with high ear dry weight and lower biomass and ears per area, highlighting the advantage of reduced tillering and the consequent improvement in sink strength, which promoted C/N metabolism at the whole plant level. An improved C metabolism in blades and ear bracts and N assimilation in all photosynthetic organs facilitated C/N remobilization to the grain and promoted yield. Therefore, we propose that further yield gains in Mediterranean conditions could be achieved by considering the source-sink dynamics and the contribution of non-foliar organs, and particularly N assimilation and remobilization during the late growth stages. We highlight the power of linking phenotyping with plant metabolism to identify novel traits at the whole plant level to support breeding programmes.


Assuntos
Grão Comestível , Nitrogênio , Fotossíntese , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Nitrogênio/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Água/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Biomassa
3.
Mycorrhiza ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816524

RESUMO

The introduction of Reduced height (Rht) dwarfing genes into elite wheat varieties has contributed to enhanced yield gain in high input agrosystems by preventing lodging. Yet, how modern selection for dwarfing has affected symbiosis remains poorly documented. In this study, we evaluated the response of both the plant and the arbuscular mycorrhizal fungus to plant genetic variation at a major Quantitative Trait Locus called QTL 4B2, known to harbor a Rht dwarfing gene, when forming the symbiosis. We used twelve inbred genotypes derived from a diversity base broadened durum wheat Evolutionary Pre-breeding Population and genotyped with a high-throughput Single Nucleotide Polymorphism (SNP) genotyping array. In a microcosm setup segregating roots and the extra-radical mycelium, each wheat genotype was grown with or without the presence of Rhizophagus irregularis. To characterize arbuscular mycorrhizal symbiosis, we assessed hyphal density, root colonization, spore production, and plant biomass. Additionally, we split the variation of these variables due either to genotypes or to the Rht dwarfing genes alone. The fungus exhibited greater development in the roots of Dwarf plants compared to non-Dwarf plants, showing increases of 27%, 37% and 51% in root colonization, arbuscules, and vesicles, respectively. In addition, the biomass of the extra-radical fungal structures increased by around 31% in Dwarf plants. The biomass of plant roots decreased by about 43% in mycorrhizal Dwarf plants. Interestingly, extraradical hyphal production was found to be partly genetically determined with no significant effect of Rht, as for plant biomasses. In contrast, variations in root colonization, arbuscules and extraradical spore production were explained by Rht dwarfing genes. Finally, when mycorrhizal, Dwarf plants had significantly lower total P content, pointing towards a less beneficial symbiosis for the plant and increased profit for the fungus. These results highlight the effect of Rht dwarfing genes on both root and fungal development. This calls for further research into the molecular mechanisms governing these effects, as well as changes in plant physiology, and their implications for fostering arbuscular mycorrhizal symbiosis in sustainable agrosystems.

4.
Plant J ; 109(6): 1507-1518, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951491

RESUMO

Durum wheat is an important cereal that is widely grown in the Mediterranean basin. In addition to high yield, grain quality traits are of high importance for farmers. The strong influence of climatic conditions makes the improvement of grain quality traits, like protein content, vitreousness, and test weight, a challenging task. Evaluation of quality traits post-harvest is time- and labor-intensive and requires expensive equipment, such as near-infrared spectroscopes or hyperspectral imagers. Predicting not only yield but also important quality traits in the field before harvest is of high value for breeders aiming to optimize resource allocation. Implementation of efficient approaches for trait prediction, such as the use of high-resolution spectral data acquired by a multispectral camera mounted on unmanned aerial vehicles (UAVs), needs to be explored. In this study, we have acquired multispectral image data with an 11-band multispectral camera mounted on a UAV and analyzed the data with machine learning (ML) models to predict grain yield and important quality traits in breeding micro-plots. Combining 11-band multispectral data for 34 cultivars and 16 environments allowed to develop ML models with good prediction capability. Applying the trained models to test sets explained a considerable degree of phenotypic variance with good accuracy showing r squared values of 0.84, 0.69, 0.64, and 0.61 and normalized root mean squared errors of 0.17, 0.07, 0.14, and 0.03 for grain yield, protein content, vitreousness, and test weight, respectively.


Assuntos
Grão Comestível , Triticum , Fenótipo , Melhoramento Vegetal
5.
BMC Genomics ; 24(1): 328, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322410

RESUMO

BACKGROUND: Septoria tritici blotch (STB) remains a significant obstacle to durum wheat cultivation on a global scale. This disease remains a challenge for farmers, researchers, and breeders, who are collectively dedicated to reduce its damage and improve wheat resistance. Tunisian durum wheat landraces have been recognized as valuable genetic ressources that exhibit resistance to biotic and abiotic stresses and therefore play a crucial role in breeding program aimed at creating new wheat varieties resistant to fungal diseases as STB, as well as adapted to climate change constraints. RESULTS: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC > 0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. CONCLUSIONS: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. Accessions grouping pattern reflected the geographical origins of the landraces. We suggested that GS2 accessions were mostly derived from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 susceptible Azizi and Jneh Khotifa accessions.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Melhoramento Vegetal , Genética Populacional , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
6.
BMC Genomics ; 24(1): 682, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964224

RESUMO

BACKGROUND: Durum wheat is one of the most important crops, especially in the Mediterranean region. Insight into the genetic diversity of germplasm can improve the breeding program management in various traits. This study was done using single nucleotide polymorphisms (SNP) markers to characterize the genetic distinctiveness and differentiation of tetraploid wheat landraces collected from nine European and Asian countries. A sum of 23,334 polymorphic SNPs was detected in 126 tetraploid wheat landraces in relation to the reference genome. RESULTS: The number of identified SNPs was 11,613 and 11,721 in A and B genomes, respectively. The highest and lowest diversity was on 6B and 6 A chromosomes, respectively. Structure analysis classified the landraces into two distinct subpopulations (K = 2). Evaluating the principal coordinate analysis (PCoA) and weighted pair-group method using arithmetic averages (WPGMA) clustering results demonstrated that landraces (99.2%) are categorized into one of the two chief subpopulations. Therefore, the grouping pattern did not clearly show the presence of a clear pattern of relationships between genetic diversity and their geographical derivation. Part of this result could be due to the historical exchange between different germplasms. Although the result did not separate landraces based on their region of origin, the landraces collected from Iran were classified into the same group and cluster. Analysis of molecular variance (AMOVA) also confirmed the results of population structure. Finally, Durum wheat landraces in some countries, including Turkey, Russia, Ukraine, and Afghanistan, were highly diverse, while others, including Iran and China, were low-diversity. CONCLUSION: The recent study concluded that the 126 tetraploid wheat genotypes and their GBS-SNP markers are very appropriate for quantitative trait loci (QTLs) mapping and genome-wide association studies (GWAS). The core collection comprises two distinct subpopulations. Subpopulation II genotypes are the most diverse genotypes, and if they possess desired traits, they may be used in future breeding programs. The degree of diversity in the landraces of countries can provide the ground for the improvement of new cultivars with international cooperation. linkage disequilibrium (LD) hotspot distribution across the genome was investigated, which provides useful information about the genomic regions that contain intriguing genes.


Assuntos
Variação Genética , Triticum , Desequilíbrio de Ligação , Triticum/genética , Estudo de Associação Genômica Ampla , Tetraploidia , Melhoramento Vegetal , Ásia , Europa (Continente) , Polimorfismo de Nucleotídeo Único
7.
BMC Plant Biol ; 23(1): 412, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674126

RESUMO

Yellow pigment content, mainly due to the accumulation of carotenoids, is a quality trait in durum wheat grain as it confers the bright yellow color to pasta preferred by consumers. Also, carotenoids are essential nutrients exerting important biological functions in human health. Consequently, biofortification strategies have been developed in many crops to increase carotenoid content. In this context, carotenoid esterification is emerging as a new breeding target for wheat biofortification, as carotenoid esters have been found to promote both carotenoid accumulation and stability. Until recently, no carotenoid esters have been identified in significant proportions in durum wheat grains, and interspecific breeding programs have been started to transfer esterification ability from common wheat and Hordeum chilense.In this work, XAT-7A1 is identified as the gene responsible for carotenoid esterification in durum wheat. Sequencing, copy number variation and mapping results show that XAT-7A1 is organized as tandem or proximal GDSL esterase/lipase copies in chromosome 7A. Three XAT-7A1 haplotypes are described: Type 1 copies, associated with high levels of carotenoid esters (diesters and monoesters) production and high expression in grain development; Type 2 copies, present in landraces with low levels of carotenoid esters (monoesters) or no esters; and Type 3 copies, without the signal peptide, resulting in zero-ester phenotypes.The identification of XAT-7A1 is a necessary step to make the carotenoid esterification ability available for durum and bread wheat breeding, which should be focused on the Type 1 XAT-7A1 haplotype, which may be assessed as a single gene since XAT-7A1 copies are inherited together.


Assuntos
Biofortificação , Triticum , Humanos , Esterificação , Triticum/genética , Variações do Número de Cópias de DNA , Melhoramento Vegetal , Ésteres , Carotenoides , Grão Comestível
8.
New Phytol ; 240(6): 2227-2238, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771248

RESUMO

The exploration of phenotypic spaces of large sets of plant species has considerably increased our understanding of diversification processes in the plant kingdom. Nevertheless, such advances have predominantly relied on interspecific comparisons that hold several limitations. Here, we grew in the field a unique set of 179 inbred lines of durum wheat, Triticum turgidum spp. durum, characterized by variable degrees of artificial selection. We measured aboveground and belowground traits as well as agronomic traits to explore the functional and agronomic trait spaces and to investigate trait-to-agronomic performance relationships. We showed that the wheat functional trait space shared commonalities with global cross-species spaces previously described, with two main axes of variation: a root foraging axis and a slow-fast trade-off axis. Moreover, we detected a clear signature of artificial selection on the variation of agronomic traits, unlike functional traits. Interestingly, we identified alternative phenotypic combinations that can optimize crop performance. Our work brings insightful knowledge about the structure of phenotypic spaces of domesticated plants and the maintenance of phenotypic trade-offs in response to artificial selection, with implications for trade-off-free and multi-criteria selection in plant breeding.


Assuntos
Genoma de Planta , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fenótipo , Triticum/genética
9.
Mol Breed ; 43(8): 66, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564974

RESUMO

Flag leaf senescence is a critical factor affecting the yield and quality of wheat. The aim of this study was to identify QTLs associated with flag leaf senescence in an F10 recombinant inbred line population derived from durum wheats UC1113 and Kofa. Bulked segregant analysis using the wheat 660K SNP array identified 3225 SNPs between extreme-phenotype bulks, and the differential SNPs were mainly clustered on chromosomes 1A, 1B, 3B, 5A, 5B, and 7A. BSR-Seq indicated that the significant SNPs were mainly located in two intervals of 354.0-389.0 Mb and 8.0-15.0 Mb on 1B and 3B, respectively. Based on the distribution of significant SNPs on chromosomes 1B and 3B, a total of 109 insertion/deletion (InDel) markers were developed, and 8 of them were finally used to map QTL in UC1113/Kofa population for flag leaf senescence. Inclusive composite interval mapping identified two major QTL in marker intervals Mar2005-Mar2116 and Mar207-Mar289, explaining 14.2-15.4% and 31.4-68.6% of the phenotypic variances across environments, respectively. Using BSR-Seq, gene expression and sequence analysis, the TraesCS1B02G211600 and TraesCS3B02G023000 were identified as candidate senescence-associated genes. This study has potential to be used in cloning key genes for flag leaf senescence and provides available molecular markers for genotyping and marker-assisted selection breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01410-3.

10.
Breed Sci ; 73(5): 445-449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38737920

RESUMO

Tan spot, a foliar disease of Triticum spp. such as bread wheat (T. aestivum L.) and durum wheat (T. turgidum ssp. durum (Desf.) Husn.) caused by the filamentous fungus Pyrenophora tritici-repentis (Died.) Drechsler leads to serious losses of crop yield and quality in some areas in Japan. P. tritici-repentis is classified into eight races according to the combinations of three necrotrophic effectors, PtrToxA, PtrToxB, and PtrToxC encoded by ToxA, ToxB, and ToxC1, respectively. Race classification has been based on reaction of a differential variety to necrotrophic effectors, which is tested by inoculation. Recent identification of the Tox genes and development of specific DNA markers have enabled us to classify races of P. tritici-repentis collected in Japan by Tox gene genotyping. We found that 17 strains collected from Triticum spp. in Japan were mainly race 1 or 2, because they carried ToxA as a toxin gene by current race classification; wheat genotype tsn1 is resistant to ToxA. Establishment of wheat cultivars carrying tsn1 would be most effective for decreasing agronomic losses caused by the disease in Japan.

11.
J Sci Food Agric ; 103(9): 4268-4274, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36482810

RESUMO

Durum wheat represents a staple food in the human diet owing to its nutritional and technological features. In comparison to common wheat, durum wheat has higher tolerance to biotic and abiotic stresses. However, its production and culinary uses are limited compared to common wheat. Therefore, significant attention was attributed to upgrading the key quality of durum wheat (i.e., hardness, protein, starch and color). This review intends to put the spotlight on the modification of these properties to create new functionalities suiting a wider range of food applications based on critical compilation of scientific publications. Targeting specific genes has been shown to be a valuable strategy to design novel wheat varieties with higher nutritional value (e.g., high amylose), improved technological properties (e.g., higher glutenin content), attractive appearance (e.g., colored wheat) and new uses (e.g., soft durum wheat for breadmaking). Further efforts are still needed to find efficient ways to stabilize and maintain these properties. © 2022 Society of Chemical Industry.


Assuntos
Amido , Triticum , Humanos , Triticum/química , Amido/química , Amilose/metabolismo , Dieta , Valor Nutritivo
12.
J Sci Food Agric ; 103(11): 5521-5528, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37058574

RESUMO

BACKGROUND: Pasta is a worldwide popular Italian food made exclusively of durum wheat. The choice of variety to be used to produce pasta is at the discretion of the producer based on the peculiar characteristics of each cultivar. The availability of analytical approaches for the tracking of specific varieties along the productive chain is becoming increasingly important to authenticate the pasta products and distinguish between fraudulent activities and cross-contaminations during the production process. Among the different methods, molecular approaches based on DNA markers are the most used for these purposes because of their ease of use and high reproducibility. RESULTS: In the present study, we used an easy simple sequence repeats-based method to identify the durum wheat varieties used to produce 25 samples of semolina and commercial pasta comparing their molecular profile with those of the four varieties declared by the producer and other 10 durum wheat cultivars commonly used in pasta production. All of the samples showed the expected molecular profile; however, most of them present also a foreign allele indicating a possible cross-contamination. Moreover, we evaluated the accuracy of the proposed approach through the analysis of 27 hand-made mixtures with increasing amounts of a specific contaminant variety, allowing the estimation of the limit of detection of 5% (w/w). CONCLUSION: We demonstrated the feasibility of the proposed method and its effectiveness in the detection of not declared varieties when these are present in a percentage equal to or higher than 5%. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Farinha , Triticum , Triticum/genética , Triticum/química , Reprodutibilidade dos Testes , Farinha/análise , Grão Comestível , Itália
13.
BMC Genomics ; 23(1): 372, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581550

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by Zymoseptoria tritici (Z. tritici), is an important biotic threat to durum wheat in the entire Mediterranean Basin. Although most durum wheat cultivars are susceptible to Z. tritici, research in STB resistance in durum wheat has been limited. RESULTS: In our study, we have identified resistance to a wide array of Z. tritici isolates in the Tunisian durum wheat landrace accession 'Agili39'. Subsequently, a recombinant inbred population was developed and tested under greenhouse conditions at the seedling stage with eight Z. tritici isolates and for five years under field conditions with three Z. tritici isolates. Mapping of quantitative trait loci (QTL) resulted in the identification of two major QTL on chromosome 2B designated as Qstb2B_1 and Qstb2B_2. The Qstb2B_1 QTL was mapped at the seedling and the adult plant stage (highest LOD 33.9, explained variance 61.6%), conferring an effective resistance against five Z. tritici isolates. The Qstb2B_2 conferred adult plant resistance (highest LOD 32.9, explained variance 42%) and has been effective at the field trials against two Z. tritici isolates. The physical positions of the flanking markers linked to Qstb2B_1 and Qstb2B_2 indicate that these two QTL are 5 Mb apart. In addition, we identified two minor QTL on chromosomes 1A (Qstb1A) and chromosome 7A (Qstb7A) (highest LODs 4.6 and 4.0, and explained variances of 16% and 9%, respectively) that were specific to three and one Z. tritici isolates, respectively. All identified QTL were derived from the landrace accession Agili39 that represents a valuable source for STB resistance in durum wheat. CONCLUSION: This study demonstrates that Z. tritici resistance in the 'Agili39' landrace accession is controlled by two minor and two major QTL acting in an additive mode. We also provide evidence that the broad efficacy of the resistance to STB in 'Agili 39' is due to a natural pyramiding of these QTL. A sustainable use of this Z. tritici resistance source and a positive selection of the linked markers to the identified QTL will greatly support effective breeding for Z. tritici resistance in durum wheat.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Plântula/genética , Triticum/genética
14.
Funct Integr Genomics ; 22(2): 141-152, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981261

RESUMO

Semi-dwarf and dwarf genes were widely used in wheat breeding for improving lodging resistant and increasing yield. Rht14 dwarf gene was identified and deployed in durum wheat, where it showed advantage on important agronomic potential. The reciprocal F2 populations derived of Castelporziano (CP) and Langdon (L) were used for mapping of Rht14, which was located in intervals 4.8 cM and 10.38 cM by KASP (Kompetitive Allele Specific PCR) markers, respectively, where corresponding to 312-454 Mbp on chromosome 6A, and finally, it was mapped to the genomic region of 402 ~ 408 Mbp in Durum Wheat Svevo RefSeq Rel. 1.0 (i.e., 405 ~ 411 Mbp in Chinese Spring RefSeq v.1.0) using recombinants by indel markers. The expression of TdGA2oxA9 was higher in dwarf line than tall lines and the bioactive GA1 was lower. No sequence difference was observed in the promoter and coding region of GA2oxA9 between the dwarf and tall parent, while obvious DNA methylation difference was found in its promoter. Two methylation-related genes with high confidence located in the candidate region and expressed differently between the tall and dwarf ones. This study proposed that Rht14 might regulate the expression of GA2oxA9 by DNA methylation in its promoter, which provided a way to clone Rht14 and to further investigate the mechanism behind.


Assuntos
Melhoramento Vegetal , Triticum , Genes de Plantas , Estudos de Associação Genética , Triticum/genética , Triticum/metabolismo
15.
Microb Ecol ; 84(2): 483-495, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34499191

RESUMO

The present research asks how plant growth-promoting bacterial (PGPB) inoculants and chemical fertilizers change rhizosphere and root endophytic bacterial communities in durum wheat, and its dependence on environmental stress. A greenhouse experiment was carried out under drought (at 40% field capacity), or salinity (150 mM NaCl) conditions to investigate the effects of a chemical fertilizer (containing nitrogen, phosphorus, potassium and zinc) or a biofertilizer (a bacterial consortium of four PGPBs). High-throughput amplicon sequencing of the 16S rRNA of the rhizosphere, non-sterilized, or surface-sterilized roots, showed shifts in bacterial communities in response to stress treatments, which were greater for salinity than for drought and tended to show increased oligotrophs relative abundances compared to non-stress controls. The results also showed that Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Thaumarchaeota, Firmicutes, and Verrucomicrobia had a higher relative abundance in the rhizosphere, while Actinobacteria were more abundant on roots, while Candidatus_Saccharibacteria and Planctomycetes inside roots. The results indicated that the root endophytic bacterial communities were more affected by (bio-) fertilization treatments than those in the rhizosphere, particularly as affected by PGPB inoculation. This greater susceptibility of endophytes to (bio-) fertilizers was associated with increased abundance of the 16S rRNA and acdS genes in plant roots, especially under stress conditions. These changes in root endophytes, which coincided with an improvement in grain yield and photosynthetic capacity of plants, may be considered as one of the mechanisms by which PGPB affect plants.


Assuntos
Secas , Rizosfera , Bactérias , Endófitos/fisiologia , Fertilizantes , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Estresse Salino , Microbiologia do Solo
16.
Mol Biol Rep ; 49(12): 11289-11300, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35819556

RESUMO

BACKGROUND: Durum wheat has a genetic capacity to accumulate toxic metals that can exceed the safety limit of the international standards, which may seriously affect human health. Identifying germplasms with low, nontoxic accumulated metal contents is important to select and develop new varieties. Thus, the objective of this study is to identify the levels of accumulated platinum in durum wheat and detect novel QTL. METHODS AND RESULTS: Platinum contents were determined using 130 durum genotypes. Results generally showed low values of accumulated Pt and significantly less than the maximum grain's Pt content determined by international standards. Pt contents among genotypes varied from ≤ 0.001 to 0.72 µg/kg with an average of 0.02. Landraces showed the lowest average accumulated Pt. GWAS was then performed with 780 SSR markers. Five QTL were detected and explained 14.4-23.1% of the total phenotypic variation. Chromosomes 3 A, 3B, and 5B appear to be hotspots and may play a crucial role in accumulated Pt and were harbored in 1, 3, and 1 QTL, respectively. CONCLUSIONS: This assessment of accumulated Pt within a unique panel included accessions mostly from Turkish regions, and GWAS used is the first study regarding accumulated Pt indices to reveal novel QTL. It will allow breeders to accelerate their selection of proper genotypes according to desired alleles and offer an opportunity to apply MAS to minimize Pt toxicity in durum wheat. Results indicated that the significance of genome (B) regions are likely related to the inheritance control of Pt content and may play a pivotal role regarding durum wheat's Pt contents. Nonetheless, these novel QTL should be validated in independent populations in numerous environments.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Triticum , Genótipo , Platina , Locos de Características Quantitativas/genética , Triticum/genética
17.
Breed Sci ; 72(5): 355-361, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36776440

RESUMO

Improvement of preharvest sprouting (PHS) resistance is an important objective in the breeding of durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) in Japan, where the harvest timing overlaps with the rainy season. In a previous study, we showed that an R-gene associated with red seed color was the most effective at promoting PHS resistance in durum wheat. However, red-seeded durum wheat is not popular because it discolors pasta. Here, to improve PHS resistance without the R-gene, we introduced a PHS resistance allele of MOTHER OF FT AND TFL 1 (MFT) and a mutated ABA 8'-hydroxylase (ABA8'OH1-A), which is involved in abscisic acid (ABA) catabolism, singly or together into white-seeded durum wheat. The introduction of both genes reliably and stably improved PHS resistance under all tested conditions. Modification of ABA catabolism might be an effective way to improve PHS resistance in durum wheat. Our findings will contribute to improved PHS resistance in breeding for white-seeded durum wheat.

18.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216323

RESUMO

Allotetraploid durum wheat is the second most widely cultivated wheat, following hexaploid bread wheat, and is one of the major protein and calorie sources of the human diet. However, durum wheat is encountered with a severe grain yield bottleneck due to the erosion of genetic diversity stemming from long-term domestication and especially modern breeding programs. The improvement of yield and grain quality of durum wheat is crucial when confronted with the increasing global population, changing climate environments, and the non-ignorable increasing incidence of wheat-related disorders. This review summarized the domestication and evolution process and discussed the durum wheat re-evolution attempts performed by global researchers using diploid einkorn, tetraploid emmer wheat, hexaploid wheat (particularly the D-subgenome), etc. In addition, the re-evolution of durum wheat would be promoted by the genetic enrichment process, which could diversify allelic combinations through enhancing chromosome recombination (pentaploid hybridization or pairing of homologous chromosomes gene Ph mutant line induced homoeologous recombination) and environmental adaptability via alien introgressive genes (wide cross or distant hybridization followed by embryo rescue), and modifying target genes or traits by molecular approaches, such as CRISPR/Cas9 or RNA interference (RNAi). A brief discussion of the future perspectives for exploring germplasm for the modern improvement and re-evolution of durum wheat is included.


Assuntos
Grão Comestível/genética , Triticum/genética , Alelos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Diploide , Domesticação , Genes de Plantas/genética , Humanos , Fenótipo , Locos de Características Quantitativas/genética , Tetraploidia
19.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499572

RESUMO

Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.


Assuntos
Microbiologia do Solo , Triticum , Triticum/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Bactérias , Desenvolvimento Vegetal , Plantas , Nitrogênio/metabolismo , Exsudatos de Plantas/metabolismo
20.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955532

RESUMO

The area of farming lands affected by increasing soil salinity is growing significantly worldwide. For this reason, breeding works are conducted to improve the salinity tolerance of important crop species. The goal of the present study was to indicate physiological or biochemical parameters characterizing three durum wheat accessions with various tolerance to salinity. The study was carried out on germinating seeds and mature plants of a Polish SMH87 line, an Australian cultivar 'Tamaroi' (salt-sensitive), and the BC5Nax2 line (salt-tolerant) exposed to 0-150 mM NaCl. Germination parameters, electrolyte leakage (EL), and salt susceptibility index were determined in the germinating caryopses, whereas photosynthetic parameters, carbohydrate and phenolic content, antioxidant activity as well as yield were measured in fully developed plants. The parameters that most differentiated the examined accessions in the germination phase were the percentage of germinating seeds (PGS) and germination vigor (Vi). In the fully developed plants, parameters included whether the plants had the maximum efficiency of the water-splitting reaction on the donor side of photosystem II (PSII)-Fv/F0, energy dissipation from PSII-DIo/CSm, and the content of photosynthetic pigments and hydrogen peroxide, which differentiated studied genotypes in terms of salinity tolerance degree. Salinity has a negative impact on grain yield by reducing the number of seeds per spike and the mass of one thousand seeds (MTS), which can be used as the most suitable parameter for determining tolerance to salinity stress. The most salt-tolerant BC5Nax2 line was characterized by the highest PGS, and Vi for NaCl concentration of 100-150 mM, content of chlorophyll a, b, carotenoids, and also MTS at all applied salt concentrations as compared with the other accessions. The most salt-sensitive cv. 'Tamaroi' demonstrated higher H2O2 concentration which proves considerable oxidative damage caused by salinity stress. Mentioned parameters can be helpful for breeders in the selection of genotypes the most resistant to this stress.


Assuntos
Salinidade , Triticum , Austrália , Clorofila A , Genótipo , Peróxido de Hidrogênio , Complexo de Proteína do Fotossistema II , Melhoramento Vegetal , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA