Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Life Sci ; 76(5): 873-892, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30420999

RESUMO

Embryonic stem cells (ESCs) are immortal stem cells that own multi-lineage differentiation potential. ESCs are commonly derived from the inner cell mass (ICM) of pre-implantation embryos. Due to their tremendous developmental capacity and unlimited self-renewal, ESCs have diverse biomedical applications. Different culture media have been developed to procure and maintain ESCs in a state of naïve pluripotency, and to preserve a stable genome and epigenome during serial passaging. Chromatin modifications such as DNA methylation and histone modifications along with microRNA activity and different signaling pathways dynamically contribute to the regulation of the ESC gene regulatory network (GRN). Such modifications undergo remarkable changes in different ESC media and determine the quality and developmental potential of ESCs. In this review, we discuss the current approaches for derivation and maintenance of ESCs, and examine how differences in culture media impact on the characteristics of pluripotency via modulation of GRN during the course of ICM outgrowth into ESCs. We also summarize the current hypotheses concerning the origin of ESCs and provide a perspective about the relationship of these cells to their in vivo counterparts (early embryonic cells around the time of implantation). Finally, we discuss generation of ESCs from human embryos and domesticated animals, and offer suggestions to further advance this fascinating field.


Assuntos
Blastocisto/citologia , Células-Tronco Embrionárias/fisiologia , Animais , Reprogramação Celular , Metilação de DNA , Transição Epitelial-Mesenquimal , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Células-Tronco Pluripotentes/fisiologia , Caracteres Sexuais , Transdução de Sinais
2.
J Assist Reprod Genet ; 36(1): 99-111, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30430313

RESUMO

PURPOSE: To assess the role of the genetic background, the culture medium supplements, and the presence of modulators of signaling pathways on mouse embryonic stem cell derivation from single blastomeres from 8-cell embryos. METHODS: Mice from permissive and non-permissive genetic backgrounds, different culture media supplements, knockout serum replacement (KSR) and N2B27, and the presence or absence of 2i treatment were used to derive mouse embryonic stem cells (mESC) from single blastomeres isolated from 8-cell embryos and from control embryos at the blastocyst stage. After the sixth passage, the putative mESC were analyzed by immunofluorescence to assess their pluripotency and, after in vitro differentiation induction, their ability to differentiate into derivatives of the three primary germ layers. Selected mESC lines derived from single blastomeres in the most efficient culture conditions were further characterized to validate their stemness. RESULTS: In control embryos, high mESC derivation efficiencies (70-96.9%) were obtained from permissive backgrounds or when embryos were cultured in medium complemented with 2i regardless of their genetic background. By contrast, only blastomeres isolated from embryos from permissive background cultured in KSR-containing medium complemented with 2i were moderately successful in the derivation of mESC lines (22.9-24.5%). Moreover, we report for the first time that B6CBAF2 embryos behave as permissive in terms of mESC derivation. CONCLUSIONS: Single blastomeres have higher requirements than whole blastocysts for pluripotency maintenance and mESC derivation. The need for 2i suggests that modulation of signaling pathways to recreate a commitment towards inner cell mass could be essential to efficiently derive mESC from single blastomeres.


Assuntos
Blastômeros/citologia , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/métodos , Patrimônio Genético , Células-Tronco Embrionárias Murinas/citologia , Animais , Blastômeros/efeitos dos fármacos , Blastômeros/metabolismo , Diferenciação Celular , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais
3.
Stem Cell Rev Rep ; 19(7): 2361-2377, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37402099

RESUMO

Cells of the inner cell mass (ICM) acquire a unique ability for unlimited self-renewal during transition into embryonic stem cells (ESCs) in vitro, while preserving their natural multi-lineage differentiation potential. Several different pathways have been identified to play roles in ESC formation but the function of non-coding RNAs in this process is poorly understood. Here, we describe several microRNAs (miRNAs) that are crucial for efficient generation of mouse ESCs from ICMs. Using small-RNA sequencing, we characterize dynamic changes in miRNA expression profiles during outgrowth of ICMs in a high-resolution, time-course dependent manner. We report several waves of miRNA transcription during ESC formation, to which miRNAs from the imprinted Dlk1-Dio3 locus contribute extensively. In silico analyses followed by functional investigations reveal that Dlk1-Dio3 locus-embedded miRNAs (miR-541-5p, miR-410-3p, and miR-381-3p), miR-183-5p, and miR-302b-3p promote, while miR-212-5p and let-7d-3p inhibit ESC formation. Collectively, these findings offer new mechanistic insights into the role of miRNAs during ESC derivation.

4.
Stem Cell Reports ; 9(4): 1275-1290, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28919260

RESUMO

Pluripotent cells emanate from the inner cell mass (ICM) of the blastocyst and when cultivated under optimal conditions immortalize as embryonic stem cells (ESCs). The fundamental mechanism underlying ESC derivation has, however, remained elusive. Recently, we have devised a highly efficient approach for establishing ESCs, through inhibition of the MEK and TGF-ß pathways. This regimen provides a platform for dissecting the molecular mechanism of ESC derivation. Via temporal gene expression analysis, we reveal key genes involved in the ICM to ESC transition. We found that DNA methyltransferases play a pivotal role in efficient ESC generation. We further observed a tight correlation between ESCs and preimplantation epiblast cell-related genes and noticed that fundamental events such as epithelial-to-mesenchymal transition blockage play a key role in launching the ESC self-renewal program. Our study provides a time course transcriptional resource highlighting the dynamics of the gene regulatory network during the ICM to ESC transition.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal , Animais , Biomarcadores , Massa Celular Interna do Blastocisto/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Metilação de DNA , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Interferência de RNA , Transcriptoma
5.
Cell Stem Cell ; 17(6): 758-766, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26526725

RESUMO

The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.


Assuntos
Reprogramação Celular , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Oócitos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/citologia , Núcleo Celular/metabolismo , Células do Cúmulo/citologia , Feminino , Heterocromatina/metabolismo , Histonas/química , Humanos , Lisina/química , Degeneração Macular/metabolismo , Camundongos , Técnicas de Transferência Nuclear , RNA Mensageiro/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA