Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
iScience ; 26(1): 105882, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691619

RESUMO

Optimal mating decisions depend on the robust coupling of signal production and perception because independent changes in either could carry a fitness cost. However, since the perception and production of mating signals are often mediated by different tissues and cell types, the mechanisms that drive and maintain their coupling remain unknown for most animal species. Here, we show that in Drosophila, behavioral responses to, and the production of, a putative inhibitory mating pheromone are co-regulated by Gr8a, a member of the Gustatory receptor gene family. Specifically, through behavioral and pheromonal data, we found that Gr8a independently regulates the behavioral responses of males and females to a putative inhibitory pheromone, as well as its production in the fat body and oenocytes of males. Overall, these findings provide a relatively simple molecular explanation for how pleiotropic receptors maintain robust mating signaling systems at the population and species levels.

2.
iScience ; 26(8): 107255, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520694

RESUMO

The development of biohydrogen as an alternative energy source has had great economic and environmental benefits. Hydrogen production from microalgae is considered a clean and sustainable energy production method that can both alleviate fuel shortages and recycle waste. Although algal hydrogen production has low energy consumption and requires only simple pretreatment, it has not been commercialized because of low product yields. To increase microalgal biohydrogen production several technologies have been developed, although they struggle with the oxygen sensitivity of the hydrogenases responsible for hydrogen production and the complexity of the metabolic network. In this review, several genetic and metabolic engineering studies on enhancing microalgal biohydrogen production are discussed, and the economic feasibility and future direction of microalgal biohydrogen commercialization are also proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA