Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(17): 3632-3641.e10, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37516108

RESUMO

The endopeptidase ADAM10 is a critical catalyst for the regulated proteolysis of key drivers of mammalian development, physiology, and non-amyloidogenic cleavage of APP as the primary α-secretase. ADAM10 function requires the formation of a complex with a C8-tetraspanin protein, but how tetraspanin binding enables positioning of the enzyme active site for membrane-proximal cleavage remains unknown. We present here a cryo-EM structure of a vFab-ADAM10-Tspan15 complex, which shows that Tspan15 binding relieves ADAM10 autoinhibition and acts as a molecular measuring stick to position the enzyme active site about 20 Å from the plasma membrane for membrane-proximal substrate cleavage. Cell-based assays of N-cadherin shedding establish that the positioning of the active site by the interface between the ADAM10 catalytic domain and the bound tetraspanin influences selection of the preferred cleavage site. Together, these studies reveal the molecular mechanism underlying ADAM10 proteolysis at membrane-proximal sites and offer a roadmap for its modulation in disease.


Assuntos
Proteína ADAM10 , Animais , Proteína ADAM10/química , Proteína ADAM10/metabolismo , Proteína ADAM10/ultraestrutura , Secretases da Proteína Precursora do Amiloide/química , Mamíferos/metabolismo , Proteólise , Tetraspaninas/metabolismo , Humanos
2.
Proc Natl Acad Sci U S A ; 120(6): e2208866120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716368

RESUMO

Canine distemper virus (CDV) is an enveloped RNA morbillivirus that triggers respiratory, enteric, and high incidence of severe neurological disorders. CDV induces devastating outbreaks in wild and endangered animals as well as in domestic dogs in countries associated with suboptimal vaccination programs. The receptor-binding tetrameric attachment (H)-protein is part of the morbilliviral cell entry machinery. Here, we present the cryo-electron microscopy (cryo-EM) structure and supramolecular organization of the tetrameric CDV H-protein ectodomain. The structure reveals that the morbilliviral H-protein is composed of three main domains: stalk, neck, and heads. The most unexpected feature was the inherent asymmetric architecture of the CDV H-tetramer being shaped by the neck, which folds into an almost 90° bent conformation with respect to the stalk. Consequently, two non-contacting receptor-binding H-head dimers, which are also tilted toward each other, are located on one side of an intertwined four helical bundle stalk domain. Positioning of the four protomer polypeptide chains within the neck domain is guided by a glycine residue (G158), which forms a hinge point exclusively in two protomer polypeptide chains. Molecular dynamics simulations validated the stability of the asymmetric structure under near physiological conditions and molecular docking showed that two receptor-binding sites are fully accessible. Thus, this spatial organization of the CDV H-tetramer would allow for concomitant protein interactions with the stalk and head domains without steric clashes. In summary, the structure of the CDV H-protein ectodomain provides new insights into the morbilliviral cell entry system and offers a blueprint for next-generation structure-based antiviral drug discovery.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Subunidades Proteicas , Glicoproteínas
3.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409522

RESUMO

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Ceratodermia Palmar e Plantar , Humanos , Camundongos , Animais , Fosforilação , Proteínas de Transporte/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transdução de Sinais/genética , Mutação , Neoplasias Esofágicas/genética
4.
Proteomics ; : e202400076, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318062

RESUMO

Ectodomain shedding, which is the proteolytic release of transmembrane proteins from the cell surface, is crucial for cell-to-cell communication and other biological processes. The metalloproteinase ADAM17 mediates ectodomain shedding of over 50 transmembrane proteins ranging from cytokines and growth factors, such as TNF and EGFR ligands, to signalling receptors and adhesion molecules. Yet, the ADAM17 sheddome is only partly defined and biological functions of the protease have not been fully characterized. Some ADAM17 substrates (e.g., HB-EGF) are known to bind to heparan sulphate proteoglycans (HSPG), and we hypothesised that such substrates would be under-represented in traditional secretome analyses, due to their binding to cell surface or pericellular HSPGs. Thus, to identify novel HSPG-binding ADAM17 substrates, we developed a proteomic workflow that involves addition of heparin to solubilize HSPG-binding proteins from the cell layer, thereby allowing their mass spectrometry detection by heparin-treated secretome (HEP-SEC) analysis. Applying this methodology to murine embryonic fibroblasts stimulated with an ADAM17 activator enabled us to identify 47 transmembrane proteins that were shed in response to ADAM17 activation. This included known HSPG-binding ADAM17 substrates (i.e., HB-EGF, CX3CL1) and 14 novel HSPG-binding putative ADAM17 substrates. Two of these, MHC-I and IL1RL1, were validated as ADAM17 substrates by immunoblotting.

5.
J Biol Chem ; 299(10): 105211, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660903

RESUMO

Corin is a transmembrane protease that activates natriuretic peptides on the cell membrane. Reduced cell surface targeting or increased ectodomain shedding disrupts cell membrane homeostasis of corin, thereby impairing its cell surface expression and enzyme activity. N-glycans are essential in corin ectodomain shedding. Lack of N-glycans promotes corin ectodomain shedding in the juxtamembrane and frizzled-1 domains. The nascent N-glycans, transferred onto the polypeptide of corin, undergo multistep N-glycan processing in the endoplasmic reticulum and Golgi. It remains unclear how trimming by Golgi α-mannosidases, the critical N-glycan processing steps in N-glycan maturation, may regulate corin biosynthesis. In this study, we examined the effects of kifunensine and swainsonine, the inhibitors for α-mannosidases I and II, on corin expression and function. Western analysis of corin proteins in cell lysates and conditioned media from the inhibitor-treated corin-stable HEK293 cells and AC16 cells showed that both α-mannosidases I and II were required to maintain complex N-glycans on cell surface corin and protect corin from ectodomain shedding in the juxtamembrane and frizzled-1 domains. Cell viability analysis revealed that inhibition of α-mannosidase I or II sensitized cardiomyocytes to hydrogen peroxide-induced injury via regulating corin. Moreover, either one of the two coding genes was sufficient to perform Golgi α-mannosidase I trimming of N-glycans on corin. Similarly, this sufficiency was observed in Golgi α-mannosidase II-coding genes. Inhibition of ectodomain shedding restored corin zymogen activation from kifunensine- or swainsonine-induced reduction. Together, our results show the important roles of Golgi α-mannosidases in maintaining cell membrane homeostasis and biological activities of corin.

6.
J Biol Chem ; 299(6): 104820, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37187291

RESUMO

Patients with cystic fibrosis (CF) have decreased severity of severe acute respiratory syndrome-like coronavirus-2 (SARS-CoV-2) infections, but the underlying cause is unknown. Patients with CF have high levels of neutrophil elastase (NE) in the airway. We examined whether respiratory epithelial angiotensin-converting enzyme 2 (ACE-2), the receptor for the SARS-CoV-2 spike protein, is a proteolytic target of NE. Soluble ACE-2 levels were quantified by ELISA in airway secretions and serum from patients with and without CF, the association between soluble ACE-2 and NE activity levels was evaluated in CF sputum. We determined that NE activity was directly correlated with increased ACE-2 in CF sputum. Additionally, primary human bronchial epithelial (HBE) cells, exposed to NE or control vehicle, were evaluated by Western analysis for the release of cleaved ACE-2 ectodomain fragment into conditioned media, flow cytometry for the loss of cell surface ACE-2, its impact on SARS-CoV-2 spike protein binding. We found that NE treatment released ACE-2 ectodomain fragment from HBE and decreased spike protein binding to HBE. Furthermore, we performed NE treatment of recombinant ACE-2-Fc-tagged protein in vitro to assess whether NE was sufficient to cleave recombinant ACE-2-Fc protein. Proteomic analysis identified specific NE cleavage sites in the ACE-2 ectodomain that would result in loss of the putative N-terminal spike-binding domain. Collectively, data support that NE plays a disruptive role in SARS-CoV-2 infection by catalyzing ACE-2 ectodomain shedding from the airway epithelia. This mechanism may reduce SARS-CoV-2 virus binding to respiratory epithelial cells and decrease the severity of COVID19 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fibrose Cística , Elastase de Leucócito , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Fibrose Cística/metabolismo , Elastase de Leucócito/metabolismo , Ligação Proteica , Proteômica , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
7.
J Biol Chem ; 299(12): 105446, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949230

RESUMO

Increasing evidence suggests that aberrant regulation of sortilin ectodomain shedding can contribute to amyloid-ß pathology and frontotemporal dementia, although the mechanism by which this occurs has not been elucidated. Here, we probed for novel binding partners of sortilin using multiple and complementary approaches and identified two proteins of the neuron-specific gene (NSG) family, NSG1 and NSG2, that physically interact and colocalize with sortilin. We show both NSG1 and NSG2 induce subcellular redistribution of sortilin to NSG1- and NSG2-enriched compartments. However, using cell surface biotinylation, we found only NSG1 reduced sortilin cell surface expression, which caused significant reductions in uptake of progranulin, a molecular determinant for frontotemporal dementia. In contrast, we demonstrate NSG2 has no effect on sortilin cell surface abundance or progranulin uptake, suggesting specificity for NSG1 in the regulation of sortilin cell surface expression. Using metalloproteinase inhibitors and A disintegrin and metalloproteinase 10 KO cells, we further show that NSG1-dependent reduction of cell surface sortilin occurred via proteolytic processing by A disintegrin and metalloproteinase 10 with a concomitant increase in shedding of sortilin ectodomain to the extracellular space. This represents a novel regulatory mechanism for sortilin ectodomain shedding that is regulated in a neuron-specific manner. Furthermore, this finding has implications for the development of strategies for brain-specific regulation of sortilin and possibly sortilin-driven pathologies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Transporte , Metaloproteases , Proteínas do Tecido Nervoso , Neurônios , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Biotinilação , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/metabolismo , Desintegrinas/deficiência , Desintegrinas/genética , Desintegrinas/metabolismo , Demência Frontotemporal/metabolismo , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Progranulinas/metabolismo , Ligação Proteica , Proteólise , Membrana Celular/metabolismo , Peptídeos beta-Amiloides/metabolismo
8.
Biochem Biophys Res Commun ; 696: 149504, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219489

RESUMO

Regulated intramembrane proteolysis (RIP) is a two-step processing mechanism for transmembrane proteins consisting of ectodomain shedding (shedding), which removes the extracellular domain through juxtamembrane processing and intramembrane proteolysis, which processes membrane-anchored shedding products within the transmembrane domain. RIP irreversibly converts one transmembrane protein into multiple soluble proteins that perform various physiological functions. The only requirement for the substrate of γ-secretase, the major enzyme responsible for intramembrane proteolysis of type I transmembrane proteins, is the absence of a large extracellular domain, and it is thought that γ-secretase can process any type I membrane protein as long as it is shed. In the present study, we showed that the shedding susceptible type I membrane protein VIP36 (36 kDa vesicular integral membrane protein) and its homolog, VIPL, have different γ-secretase susceptibilities in their transmembrane domains. Analysis of the substitution mutants suggested that γ-secretase susceptibility is regulated by C-terminal amino acids in the transmembrane domain. We also compared the transmembrane domains of several shedding susceptible membrane proteins and found that each had a different γ-secretase susceptibility. These results suggest that the transmembrane domain is not simply a stretch of hydrophobic amino acids but is an important element that regulates membrane protein function by controlling the lifetime of the membrane-anchored shedding product.


Assuntos
Secretases da Proteína Precursora do Amiloide , Lectinas , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Lectinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos , Membrana Celular/metabolismo
9.
Exp Dermatol ; 33(7): e15125, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946225

RESUMO

The 16th non-collagenous domain (NC16A) of BP180 is the main antigenic target of autoantibodies in bullous pemphigoid (BP) and mucous membrane pemphigoid (MMP). Commercially available assays detect serum autoantibodies against NC16A in the majority of BP (80%-90%) and in approximately 50% of MMP patients. However, a standardized test system for detecting antibodies against other regions of BP180 is still lacking. Moreover, anti-BP180 autoantibodies have been found in neurological conditions such as multiple sclerosis and Parkinson disease. This study aimed at identifying primary epitopes recognized by BP autoantibodies on the BP180 ectodomain. Serum samples of 51 BP and 30 MMP patients both without anti-NC16A reactivity were included along with 44 multiple sclerosis and 75 Parkinson disease sera. Four overlapping His-tagged proteins covering the entire BP180 ectodomain (BP180(ec)1-4) were cloned, expressed, purified and tested for reactivity by immunoblot. IgG antibodies to BP180(ec)3 were detected in 98% of BP, 77% of MMP and 2% of normal human sera. Only weak reactivity was detected for neurological diseases against BP180(ec)1, BP180(ec)2 and BP180(ec)4, in 3%, 11% and 7% of tested multiple sclerosis sera, respectively. 8% of Parkinson disease sera reacted with BP180(ec)2 and 9% with BP180(ec)4. In conclusion, this study successfully identified epitopes recognized by BP autoantibodies outside the NC16A domain in pemphigoid diseases. These findings contribute to a better understanding of the immune response in BP and MMP with potential implications for a future diagnostic assay for NC16A-negative pemphigoid patients.


Assuntos
Autoanticorpos , Autoantígenos , Colágeno Tipo XVII , Esclerose Múltipla , Colágenos não Fibrilares , Doença de Parkinson , Penfigoide Mucomembranoso Benigno , Penfigoide Bolhoso , Humanos , Doença de Parkinson/imunologia , Doença de Parkinson/sangue , Colágenos não Fibrilares/imunologia , Penfigoide Bolhoso/imunologia , Penfigoide Bolhoso/sangue , Autoantígenos/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Penfigoide Mucomembranoso Benigno/imunologia , Penfigoide Mucomembranoso Benigno/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Epitopos/imunologia , Domínios Proteicos , Feminino , Masculino , Idoso
10.
Cell Commun Signal ; 22(1): 128, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360757

RESUMO

In pathologies including cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.


Assuntos
Glicosaminoglicanos , Neoplasias Ovarianas , Humanos , Feminino , Glicosaminoglicanos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Heparitina Sulfato/metabolismo
11.
EMBO Rep ; 23(6): e54305, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527514

RESUMO

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Assuntos
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/genética , Enzima de Conversão de Angiotensina 2 , Fusão Celular , Humanos , Pulmão , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
12.
Fish Shellfish Immunol ; 144: 109219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952850

RESUMO

Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1ß, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.


Assuntos
Proteína HMGB1 , Salmo salar , Animais , Humanos , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Flagelina/farmacologia , Flagelina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Células HeLa , NF-kappa B/metabolismo , Cauda , Citocinas/genética , Citocinas/metabolismo
13.
Cell Mol Life Sci ; 80(5): 135, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37119365

RESUMO

Several membrane-anchored signal mediators such as cytokines (e.g. TNFα) and growth factors are proteolytically shed from the cell surface by the metalloproteinase ADAM17, which, thus, has an essential role in inflammatory and developmental processes. The membrane proteins iRhom1 and iRhom2 are instrumental for the transport of ADAM17 to the cell surface and its regulation. However, the structure-function determinants of the iRhom-ADAM17 complex are poorly understood. We used AI-based modelling to gain insights into the structure-function relationship of this complex. We identified different regions in the iRhom homology domain (IRHD) that are differentially responsible for iRhom functions. We have supported the validity of the predicted structure-function determinants with several in vitro, ex vivo and in vivo approaches and demonstrated the regulatory role of the IRHD for iRhom-ADAM17 complex cohesion and forward trafficking. Overall, we provide mechanistic insights into the iRhom-ADAM17-mediated shedding event, which is at the centre of several important cytokine and growth factor pathways.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteína ADAM17/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Citocinas/metabolismo , Modelos Estruturais
14.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301871

RESUMO

Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.


Assuntos
Caderinas/química , Caderinas/metabolismo , Actinas/metabolismo , Animais , Adesão Celular , Citoesqueleto , Cães , Células Madin Darby de Rim Canino , Miosina Tipo II/metabolismo , Ligação Proteica , Vinculina/metabolismo
15.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673989

RESUMO

Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.


Assuntos
Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide , Proteólise , c-Mer Tirosina Quinase , Humanos , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células THP-1 , Macrófagos/metabolismo , Proteína S/metabolismo , Monócitos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
16.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675685

RESUMO

Alantolactone is a eudesmane-type sesquiterpene lactone containing an α-methylene-γ-lactone moiety. Previous studies showed that alantolactone inhibits the nuclear factor κB (NF-κB) signaling pathway by targeting the inhibitor of NF-κB (IκB) kinase. However, in the present study, we demonstrated that alantolactone selectively down-regulated the expression of tumor necrosis factor (TNF) receptor 1 (TNF-R1) in human lung adenocarcinoma A549 cells. Alantolactone did not affect the expression of three adaptor proteins recruited to TNF-R1. The down-regulation of TNF-R1 expression by alantolactone was suppressed by an inhibitor of TNF-α-converting enzyme. Alantolactone increased the soluble forms of TNF-R1 that were released into the culture medium as an ectodomain. The structure-activity relationship of eight eudesmane derivatives revealed that an α-methylene-γ-lactone moiety was needed to promote TNF-R1 ectodomain shedding. In addition, parthenolide and costunolide, two sesquiterpene lactones with an α-methylene-γ-lactone moiety, increased the amount of soluble TNF-R1. Therefore, the present results demonstrate that sesquiterpene lactones with an α-methylene-γ-lactone moiety can down-regulate the expression of TNF-R1 by promoting its ectodomain shedding in A549 cells.


Assuntos
Regulação para Baixo , Lactonas , Receptores Tipo I de Fatores de Necrose Tumoral , Sesquiterpenos , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
17.
J Proteome Res ; 22(8): 2570-2576, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37458416

RESUMO

Ectodomain shedding of membrane proteins is a proteolytic event involved in several biological phenomena, including inflammation, development, diseases, and cancer progression. Though ectodomain shedding is a post-translational modification that plays an important role in cellular regulation, this biological phenomenon is seriously underannotated in public protein databases. Given the importance of the shedding events, we conducted a comprehensive literature review for membrane protein shedding and constructed the database, SheddomeDB in 2017. In response to user feedback, novel shedding findings, more associated biomedical events, and the advance in web technology, we revised SheddomeDB to a new version, SheddomeDB 2023. The revised SheddomeDB 2023 includes 481 protein entries across seven species; all the content was manually verified and curated. The content of SheddomeDB 2023 mainly came from a comprehensive literature survey by our newly developed semiautomated screening tool. We also integrated verified and updated cleavage and secretome information from other databases into the revision. In addition, SheddomeDB 2023 features a graphical presentation of cleavage information and a user-friendly interface for searching and browsing entries in the database. This revised comprehensive database of ectodomain shedding is expected to benefit biomedical researchers across different disciplines.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteínas de Membrana/metabolismo , Proteólise , Processamento de Proteína Pós-Traducional , Bases de Dados de Proteínas
18.
J Virol ; 96(18): e0133722, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069551

RESUMO

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacinas Combinadas , Estomatite Vesicular , Aminoácidos/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas/imunologia , Vacinas Sintéticas/genética , Vesiculovirus/imunologia
19.
BMC Cancer ; 23(1): 949, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803411

RESUMO

BACKGROUND: Collagens are the major components of the extracellular matrix (ECM) and are known to contribute to tumor progression and metastasis. There are 28 different types of collagens each with unique functions in maintaining tissue structure and function. Type XVII collagen (BP180) is a type II transmembrane protein that provides stable adhesion between epithelial cells and the underlying basement membrane. Aberrant expression and ectodomain shedding of type XVII collagen have been associated with epithelial damage, tumor invasiveness, and metastasis in multiple tumor types and may consequently be used as a potential (non-invasive) biomarker in cancer and treatment target. METHOD: An ELISA targeting the type XVII collagen ectodomain (PRO-C17) was developed for use in serum. PRO-C17 was measured in a cohort of patients with 11 different cancer types (n = 214) and compared to healthy controls (n = 23) (cohort 1). Based on the findings from cohort 1, PRO-C17 and its association with survival was explored in patients with metastatic colorectal cancer (mCRC) treated with bevacizumab in combination with chemotherapy (n = 212) (cohort 2). RESULTS: PRO-C17 was robust and specific towards the ectodomain of type XVII collagen. In cohort 1, PRO-C17 levels were elevated (p < 0.05) in serum from patients with CRC, kidney, ovarian, bladder, breast, and head and neck cancer compared to healthy controls. PRO-C17 was especially good at discriminating between CRC patients and healthy controls with an AUROC of 0.904. In cohort 2, patients with mCRC and high levels (tertile 3) of PRO-C17 had shorter overall survival (OS) with a median OS of 390 days compared to 539 days for patients with low levels of PRO-C17. When evaluated by multivariate Cox regression analysis, high PRO-C17 was predictive for poor OS independent of risk factors and the tumor fibrosis biomarker PRO-C3. CONCLUSION: PRO-C17 measures the ectodomain of type XVII collagen in serum and is a promising non-invasive biomarker that can aid in understanding tumor heterogeneity as well as elaborate on the role of collagen XVII in tumor progression. Moreover, the findings in the study proposes PRO-C17 as novel biomarker of epithelial damage in specific cancer types including CRC.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Humanos , Prognóstico , Colágenos não Fibrilares/metabolismo , Colágeno/química , Autoantígenos/metabolismo , Biomarcadores , Colágeno Tipo XVII
20.
FASEB J ; 36(3): e22234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199397

RESUMO

The transmembrane protease angiotensin converting enzyme 2 (ACE2) is a protective regulator within the renin angiotensin system and additionally represents the cellular receptor for SARS-CoV. The release of soluble ACE2 (sACE2) from the cell surface is hence believed to be a crucial part of its (patho)physiological functions, as both, ACE2 protease activity and SARS-CoV binding ability, are transferred from the cell membrane to body fluids. Yet, the molecular sources of sACE2 are still not completely investigated. In this study, we show different sources and prerequisites for the release of sACE2 from the cell membrane. By using inhibitors as well as CRISPR/Cas9-derived cells, we demonstrated that, in addition to the metalloprotease ADAM17, also ADAM10 is an important novel shedding protease of ACE2. Moreover, we observed that ACE2 can also be released in extracellular vesicles. The degree of either ADAM10- or ADAM17-mediated ACE2 shedding is dependent on stimulatory conditions and on the expression level of the pro-inflammatory ADAM17 regulator iRhom2. Finally, by using structural analysis and in vitro verification, we determined for the first time that the susceptibility to ADAM10- and ADAM17-mediated shedding is mediated by the collectrin-like part of ACE2. Overall, our findings give novel insights into sACE2 release by several independent molecular mechanisms.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteína ADAM10/genética , Proteína ADAM17/genética , Secretases da Proteína Precursora do Amiloide/genética , Enzima de Conversão de Angiotensina 2/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Vesículas Extracelulares/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA