Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 34(1): e14307, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36648389

RESUMO

Top-class athletes have optimized their athletic performance largely through adequate training, nutrition, recovery, and sleep. A key component of sports nutrition is the utilization of nutritional ergogenic aids, which may provide a small but significant increase in athletic performance. Over the last decade, there has been an exponential increase in the consumption of nutritional ergogenic aids, where over 80% of young athletes report using at least one nutritional ergogenic aid for training and/or competition. Accordingly, due to their extensive use, there is a growing need for strong scientific investigations validating or invalidating the efficacy of novel nutritional ergogenic aids. Notably, an overview of the physiological considerations that play key roles in determining ergogenic efficacy is currently lacking. Therefore, in this brief review, we discuss important physiological considerations that contribute to ergogenic efficacy for nutritional ergogenic aids that are orally ingested including (1) the impact of first pass metabolism, (2) rises in systemic concentrations, and (3) interactions with the target tissue. In addition, we explore mouth rinsing as an alternate route of ergogenic efficacy that bypasses the physiological hurdles of first pass metabolism via direct stimulation of the central nervous system. Moreover, we provide real-world examples and discuss several practical factors that can alter the efficacy of nutritional ergogenic aids including human variability, dosing protocols, training status, sex differences, and the placebo effect. Taking these physiological considerations into account will strengthen the quality and impact of the literature regarding the efficacy of potential ergogenic aids for top-class athletes.


Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Humanos , Feminino , Masculino , Suplementos Nutricionais , Atletas , Substâncias para Melhoria do Desempenho/farmacologia
2.
Scand J Med Sci Sports ; 34(3): e14595, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38458991

RESUMO

We investigated the acute effects of caffeine supplementation (6 mgï½¥kg-1 ) on 60-m sprint performance and underlying components with a step-to-step ground reaction force measurement in 13 male sprinters. After the first round sprint as a control, caffeine supplementation-induced improvement in 60-m sprint times (7.811 s at the first versus 7.648 s at the second round, 2.05%) were greater compared with the placebo condition (7.769 s at the first versus 7.768 s at the second round, 0.02%). Using average values for every four steps, in the caffeine condition, higher running speed (all six step groups), higher step frequency (5th-16th and 21st-24th step groups), shorter support time (all the step groups except for 13th-16th step) and shorter braking time (9th-24th step groups) were found. Regarding ground reaction forces variables, greater braking mean force (13th-19th step group), propulsive mean force (1st-12th and 17th-20th step groups), and effective vertical mean force (9th-12th step group) were found in the caffeine condition. For the block clearance phase at the sprint start, push-off and reaction times did not change, while higher total anteroposterior mean force, average horizontal external power, and ratio of force were found in the caffeine condition. These results indicate that, compared with placebo, acute caffeine supplementation improved sprint performance regardless of sprint sections during the entire acceleration phase from the start through increases in step frequency with decreases in support time. Moreover, acute caffeine supplementation promoted increases in the propulsive mean force, resulting in the improvement of sprint performance.


Assuntos
Desempenho Atlético , Cafeína , Humanos , Masculino , Fenômenos Biomecânicos , Cafeína/farmacologia , Cinética , Aceleração , Suplementos Nutricionais
3.
Eur J Appl Physiol ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068627

RESUMO

INTRODUCTION: Sodium bicarbonate (NaHCO3) ingestion has been found to be ergogenic in high-intensity exercise that ranges from 1 to 10 min; however, limited studies have investigated high-intensity exercise beyond this duration. PURPOSE: The present study aimed to determine the effect of NaHCO3 ingested using a carbohydrate hydrogel delivery system on 40 km time trial (TT) performance in trained male cyclists. METHODS: Fourteen trained male cyclists ingested 0.3 g kg-1 BM NaHCO3 (Maurten AB, Sweden) to determine individualised peak alkalosis, which established time of ingestion prior to exercise. Participants completed a 40 km familiarisation TT, and two 40 km experimental TTs after ingestion of either NaHCO3 or placebo in a randomised, double-blind, crossover design. RESULTS: NaHCO3 supplementation improved performance (mean improvement = 54.14 s ± 18.16 s; p = 0.002, g = 0.22) and increased blood buffering capacity prior to (HCO3- mean increase = 5.6 ± 0.2 mmol L-1, p < 0.001) and throughout exercise (f = 84.82, p < 0.001, pη2 = 0.87) compared to placebo. There were no differences in total gastrointestinal symptoms (GIS) between conditions either pre- (NaHCO3, 22 AU; Placebo, 44 AU; p = 0.088, r = 0.46) or post-exercise (NaHCO3, 76 AU; Placebo, 63 AU; p = 0.606, r = 0.14). CONCLUSION: The present study suggests that ingesting NaHCO3 mini-tablets in a carbohydrate hydrogel can enhance 40 km TT performance in trained male cyclists, with minimal GIS. This ingestion strategy could therefore be considered by cyclists looking for a performance enhancing ergogenic aid.

4.
Eur J Appl Physiol ; 124(2): 537-549, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37608124

RESUMO

PURPOSE: We investigated whether caffeine consumption can enhance peak oxygen uptake ([Formula: see text]) by increasing peak ventilation during an incremental cycling test, and subsequently enhance time to exhaustion (TTE) during high-intensity cycling exercise in moderate normobaric hypoxia. METHODS: We conducted a double-blind, placebo cross-over design study. Sixteen recreational male endurance athletes (age: 20 ± 2 years, [Formula: see text]: 55.6 ± 3.6 ml/kg/min, peak power output: 318 ± 40 W) underwent an incremental cycling test and a TTE test at 80% [Formula: see text] (derived from the placebo trial) in moderate normobaric hypoxia (fraction of inspired O2: 15.3 ± 0.2% corresponding to a simulated altitude of ~ 2500 m) after consuming either a moderate dose of caffeine (6 mg/kg) or a placebo. RESULTS: Caffeine consumption resulted in a higher peak ventilation [159 ± 21 vs. 150 ± 26 L/min; P < 0.05; effect size (ES) = 0.31]. [Formula: see text] (3.58 ± 0.44 vs. 3.47 ± 0.47 L/min; P < 0.01; ES = 0.44) and peak power output (308 ± 44 vs. 302 ± 44 W; P = 0.02, ES = 0.14) were higher following caffeine consumption than during the placebo trial. During the TTE test, caffeine consumption enhanced minute ventilation (P = 0.02; ES = 0.28) and extended the TTE (426 ± 74 vs. 358 ± 75 s; P < 0.01, ES = 0.91) compared to the placebo trial. There was a positive correlation between the percent increase of [Formula: see text] following caffeine consumption and the percent increase in TTE (r = 0.49, P < 0.05). CONCLUSION: Moderate caffeine consumption stimulates breathing and aerobic metabolism, resulting in improved performance during incremental and high-intensity endurance exercises in moderate normobaric hypoxia.


Assuntos
Cafeína , Resistência Física , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Cafeína/farmacologia , Exercício Físico , Hipóxia , Oxigênio , Consumo de Oxigênio , Teste de Esforço
5.
Int J Sport Nutr Exerc Metab ; 34(1): 30-37, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898479

RESUMO

Guarana (GUA) seed extract, containing caffeine (CAF) and additional bioactive compounds, may positively affect mental performance, but evidence regarding exercise is limited. This investigation assessed acute GUA ingestion compared with CAF on endurance performance. Eleven endurance-trained noncyclists and cyclists (V˙O2peak = 49.7 ± 5.9, 60.4 ± 4.6 ml·kg·min-1) completed a double-blind, crossover experiment after ingesting (a) 100 mg CAF, (b) 500 mg GUA (containing 130 mg CAF), or (c) placebo (P) prior to 60-min fixed cycling workload (FIX) + 15-min time trial. Oxygen uptake, heart rate, respiratory exchange ratio, blood glucose, and lactate were not different (p ≥ .052) during FIX. A significant interaction (p = .042) for perceived exertion was observed at 50-min FIX with lower rating (p = .023) for GUA versus CAF but not compared with P. Work accumulated over 15-min time trial was greater (p = .038) for GUA versus P due to higher early (1-11 min) work outputs. Work performance favored (effect size = 0.18; 95% confidence interval [0.003, 0.355], p = .046) GUA (241.4 ± 39.9 kJ) versus P (232.1 ± 46.6 kJ), but CAF (232.3 ± 43.9) was not different from GUA (effect size = 0.19; 95% confidence interval [-0.022, 0.410], p = .079) or P. Postexercise strength loss was not attenuated with GUA (-5.6 ± 8.5%) or CAF (-8.3 ± 9.4%) versus P (-10.3 ± 5.1%). Acute GUA ingestion improved work performance relative to P, but effects were trivial to small and unrelated to altered substrate oxidation or muscular strength. Ergogenicity may involve central mechanisms reducing perceived effort with GUA (containing 130 mg caffeine). Due to issues related to identical matching of dosage, whether GUA confers additional benefits beyond its CAF content cannot be determined at present.


Assuntos
Desempenho Atlético , Paullinia , Humanos , Cafeína , Resistência Física/fisiologia , Ácido Láctico , Exercício Físico/fisiologia , Método Duplo-Cego , Estudos Cross-Over , Desempenho Atlético/fisiologia
6.
Int J Sport Nutr Exerc Metab ; 34(3): 137-144, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458183

RESUMO

There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.


Assuntos
Cafeína , Creatina , Humanos , Masculino , Anaerobiose , Cafeína/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Poliésteres
7.
Int J Sport Nutr Exerc Metab ; 34(2): 101-110, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215733

RESUMO

Caffeine is an ergogenic substance that is consumed globally in many forms. The use of buccally absorbable formulations instead of gastrointestinal uptake has become increasingly popular over the years, especially when accelerated absorption with minimal gastrointestinal stress is desired. This study investigated the impact of five different formulations and administration routes of caffeine on the whole blood concentrations of caffeine, paraxanthine, and theobromine: caffeinated capsules, tablets, shots, pouches, and chewing gums. A uniform dose of caffeine (200 mg) was administered to 16 healthy recreational athletes (26.0 ± 2.1 years) using a randomized crossover design. Samples were taken in the form of dried blood spots at 16 different time points in a 2-hr timeframe after drug administration. The samples were analyzed using a validated liquid chromatography-tandem mass spectrometry method. The results for caffeine showed no significant differences in the overall bioavailability (area under the concentration-time curve), maximal concentration, and time to maximum concentration. However, when analyzing the bioavailability of caffeine in the first 5, 10, and 15 min, the liquid caffeine formulation was superior to other administered forms (p < .05). This indicates that caffeine solubility has a major influence on its absorption rate. In sports, the rate of caffeine absorption must be considered, not only when ingesting anhydrous caffeine, but also when choosing buccal absorption. These findings imply that general guidelines for ergogenic caffeine use should consider the formulation used and, accordingly, the corresponding route of absorption.


Assuntos
Cafeína , Esportes , Humanos , Administração Oral , Área Sob a Curva , Disponibilidade Biológica , Estudos Cross-Over , Adulto Jovem , Adulto
8.
Int J Sport Nutr Exerc Metab ; 34(3): 164-171, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237581

RESUMO

Nitrate (NO3-) has properties that can improve muscle function, leading to improvements in metabolic cost of exercise as well as enhance force production. Gymnastics is a whole-body sport, involving events that demand a high level of strength and fatigue resistance. However, the effect of NO3- supplementation on both upper- and lower-body function in gymnasts is unknown. This study examined the effect of acute beetroot juice (BRJ) supplementation on isokinetic strength and endurance of the upper- and lower-body in highly trained international-level male gymnasts. In a double-blind, randomized crossover design, 10 international-level male gymnasts completed two acute supplementation periods, consuming either 2 × 70 ml NO3--rich (∼12.8 mmol/L of NO3-) or NO3--depleted (PLA) BRJ. Maximal strength of the upper-leg and upper-arm at 60°/s, 120°/s, 180°/s, and 300°/s, and muscular endurance (50 repeated isokinetic contractions at 180°/s) were assessed. Plasma NO3- (BRJ: 663 ± 164 µM, PLA: 89 ± 48 µM) and nitrite (NO2-) concentrations (BRJ: 410 ± 137 nmol/L, PLA: 125 ± 36 nmol/L) were elevated following BRJ compared to PLA (both p < .001). Maximal strength of knee and elbow extensors and flexors did not differ between supplements (p > .05 for all velocities). Similarly, fatigue index of knee and elbow extension and flexion was not different between supplements (all p > .05). Acute BRJ supplementation, containing ∼12.8 mmol/L of NO3-, increased plasma NO3- and NO2- concentrations, but did not enhance isokinetic strength or fatigue resistance of either upper or lower extremities in international-level male gymnasts.


Assuntos
Desempenho Atlético , Beta vulgaris , Humanos , Masculino , Dióxido de Nitrogênio , Antioxidantes , Suplementos Nutricionais , Nitratos , Desempenho Atlético/fisiologia , Método Duplo-Cego , Poliésteres , Estudos Cross-Over , Sucos de Frutas e Vegetais
9.
Nutr Health ; 30(1): 77-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37408367

RESUMO

Background: Curcumin is a polyphenol derived from the Curcuma longa L (turmeric) plant and has gained attention through its perceived anti-inflammatory characteristics. The potential interaction with exercise-induced muscle damage (EIMD) and delayed onset muscle soreness (DOMS) has led to investigation of curcumin as a post-exercise strategy that may have the potential to lessen acute reductions in functional strength (FS) following physical activity. Aim: The purpose of this review is to assess the evidence examining curcumin in relation to four outcome measures: FS, EIMD, DOMS and inflammation. Methods: A Medline, SPORTDiscus and CINAHL database search was undertaken with no publication date limit. Sixteen papers met the inclusion criteria and were included in this review. Three meta-analyses were completed for EIMD, DOMS and inflammation, respectively, with FS being excluded due to limited research. Results: Effect sizes were as follows: EIMD (0.15, -0.12, -0.04, -0.2 and -0.61 corresponding to 0, 24, 48, 72 and 96 h post-exercise, respectively), DOMS (-0.64, -0.33, 0.06, -0.53 and -1.16 corresponding to 0, 24, 48, 72 and 96 h post-exercise, respectively) and inflammation (-0.10, 0.26, 0.15 and 0.26 corresponding to 0, 24, 48 and 72 h post-exercise, respectively). A 96 h post-exercise inflammation meta-analysis was not conducted due to limited data. Conclusion: No effect sizes were statistically significant for EIMD (p = 0.644, 0.739, 0.893, 0.601 and 0.134), DOMS (p = 0.054, 0.092, 0.908, 0.119 and 0.074) and inflammation (p = 0.729, 0.603, 0.611 and 0.396). Further research is needed to thoroughly examine whether an effect exists.


Assuntos
Curcumina , Humanos , Curcumina/uso terapêutico , Curcumina/farmacologia , Suplementos Nutricionais , Mialgia/etiologia , Inflamação , Músculos , Músculo Esquelético/fisiologia
10.
Nitric Oxide ; 138-139: 105-119, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37438201

RESUMO

Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.

11.
Nitric Oxide ; 136-137: 33-47, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244391

RESUMO

Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.


Assuntos
Beta vulgaris , Nitratos , Humanos , Idoso , Óxido Nítrico/metabolismo , Suplementos Nutricionais , Contração Muscular , Disponibilidade Biológica , Músculo Esquelético/metabolismo , Método Duplo-Cego
12.
Crit Rev Food Sci Nutr ; 63(21): 5080-5093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34882489

RESUMO

Muscle acidification is one of the main factors causing fatigue during exercise, thus compromising performance. The sport supplements beta alanine (ß-A) and sodium bicarbonate (SB) are thought to enhance the effects of the body's buffer systems by reducing H+ concentrations. The aim of this systematic review was to analyze the effects of ß-A and SB co-supplementation on the organism's buffering capacity and sport performance. The databases PubMed, Web of Science, Medline, CINAHL and SPORTDiscus were searched until November 2021 following PRISMA guidelines. Randomized controlled trials, at least single-blind, performed in athletes of any age were considered. Nine studies including a total of 221 athletes were identified for review. Athletes were supplemented with ß-A and SB while they performed exercise tests to assess physical performance and buffer capacity. Five of the nine studies indicated there was some additional improvement in buffering capacity and performance with co-supplementation, while one study concluded that the effect was comparable to the added effects of the individual supplements. According to the results of the studies reviewed, we would recommend ß-A and SB co-supplementation during high intensity exercises lasting between 30 s and 10 min.


Assuntos
Exercício Físico , Bicarbonato de Sódio , Humanos , Bicarbonato de Sódio/farmacologia , Método Simples-Cego , Exercício Físico/fisiologia , Suplementos Nutricionais , beta-Alanina/farmacologia
13.
Crit Rev Food Sci Nutr ; 63(29): 9859-9874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35475945

RESUMO

The interest in the benefits of caffeine in combat sports has grown exponentially in the last few years, evidenced by the significant rise of post-competition urine caffeine concentration. We conduct a systematic review and meta-analysis on the effects of caffeine on different performance variables in combat sports athletes. In total, we included 25 studies. All studies included had blinded, and cross-over experimental designs, and we conducted a risk of bias analysis. For nonspecific outcomes, there was an ergogenic effect of caffeine on vertical jump height (SMD: 0.38; 95% CI: 0.04, 0.71) and reaction time (SMD: -0.98, 95% CI: -1.46,-0.50). For outcomes specific to combat sports, there was an increase in the number of throws with caffeine in the Special Judo Fitness Test (SMD: 0.62; 95% CI: 0.14, 1.09). Caffeine ingestion increased the number of offensive actions during combats (SMD: 0.40; 95% CI: 0.06, 0.74). Caffeine ingestion increased the duration of offensive actions during combat (SMD: 0.58; 95% CI: 0.21, 0.96). Finally, caffeine ingestion increased blood lactate concentration after bout 1 (SMD: 1.35) bout 2 (SMD: 1.43) and bout 3 (SMD: 1.98). Overall, athletes competing in combat sports may consider supplementing with caffeine for an acute increase in exercise performance.


Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Humanos , Cafeína/farmacologia , Exercício Físico , Substâncias para Melhoria do Desempenho/farmacologia , Ácido Láctico
14.
Eur J Appl Physiol ; 123(6): 1179-1189, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36700971

RESUMO

PURPOSE: To explore the effect of tasting unpleasant salty or bitter solutions on lower limb corticomotor excitability and neuromuscular function. METHODS: Nine females and eleven males participated (age: 27 ± 7 years, BMI: 25.3 ± 4.0 kg m-2). Unpleasant salty (1 M) and bitter (2 mM quinine) solutions were compared to water, sweetened water, and no solution, which functioned as control conditions. In a non-blinded randomized cross-over order, each solution was mouth rinsed (10 s) and ingested before perceptual responses, instantaneous heart rate (a marker of autonomic nervous system activation), quadricep corticomotor excitability (motor-evoked potential amplitude) and neuromuscular function during a maximal voluntary contraction (maximum voluntary force, resting twitch force, voluntary activation, 0-50 ms impulse, 0-100 impulse, 100-200 ms impulse) were measured. RESULTS: Hedonic value (water: 47 ± 8%, sweet: 23 ± 17%, salt: 71 ± 8%, bitter: 80 ± 10%), taste intensity, unpleasantness and increases in heart rate (no solution: 14 ± 5 bpm, water: 18 ± 5 bpm, sweet: 20 ± 5 bpm, salt: 24 ± 7 bpm, bitter: 23 ± 6 bpm) were significantly higher in the salty and bitter conditions compared to control conditions. Nausea was low in all conditions (< 15%) but was significantly higher in salty and bitter conditions compared to water (water: 3 ± 5%, sweet: 6 ± 13%, salt: 7 ± 9%, bitter: 14 ± 16%). There was no significant difference between conditions in neuromuscular function or corticomotor excitability variables. CONCLUSION: At rest, unpleasant tastes appear to have no influence on quadricep corticomotor excitability or neuromuscular function. These data question the mechanisms via which unpleasant tastes are proposed to influence exercise performance.


Assuntos
Antissépticos Bucais , Paladar , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Antissépticos Bucais/farmacologia , Quinina/farmacologia , Paladar/fisiologia , Água , Estudos Cross-Over
15.
Eur J Appl Physiol ; 123(4): 683-693, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36478078

RESUMO

The findings of the ischemic preconditioning (IPC) on exercise performance are mixed regarding types of exercise, protocols and participants' training status. Additionally, studies comparing IPC with sham (i.e., low-pressure cuff) and/or control (i.e., no cuff) interventions are contentious. While studies comparing IPC versus a control group generally show an IPC significant effect on performance, sham interventions show the same performance improvement. Thus, the controversy over IPC ergogenic effect may be due to limited discussion on the psychophysiological mechanisms underlying cuff maneuvers. Psychophysiology is the study of the interrelationships between mind, body and behavior, and mental processes are the result of the architecture of the nervous system and voluntary exercise is a behavior controlled by the central command modulated by sensory inputs. Therefore, this narrative review aims to associate potential IPC-induced positive effects on performance with sensorimotor pathways (e.g., sham influencing bidirectional body-brain integration), hemodynamic and metabolic changes (i.e., blood flow occlusion reperfusion cycles). Overall, IPC and sham-induced mechanisms on exercise performance may be due to a bidirectional body-brain integration of muscle sensory feedback to the central command resulting in delayed time to exhaustion, alterations on perceptions and behavior. Additionally, hemodynamic responses and higher muscle oxygen extraction may justify the benefits of IPC on muscle contractile function.


Assuntos
Precondicionamento Isquêmico , Humanos , Precondicionamento Isquêmico/métodos , Exercício Físico , Reperfusão , Teste de Esforço , Psicofisiologia , Músculo Esquelético/fisiologia
16.
Eur J Appl Physiol ; 123(3): 585-599, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36383249

RESUMO

AIM: The acute myocellular responses of caffeine supplementation during resistance exercise (RE) have not been investigated. ß2-Adrenergic receptors (ß2AR) may be a target of the stimulatory effects of caffeine and stimulate bioenergetic pathways including protein kinase A (PKA), and mitogen-activated protein kinases (MAPK). PURPOSE: Elucidate the effects of pre-workout supplementation on signaling responses to an acute RE bout. METHODS: In a randomized, counter-balanced, double-blind, placebo-controlled, within-subject crossover study, ten resistance-trained males (mean ± SD; age = 22 ± 2.4 years, height = 175 ± 7 cm, body mass = 84.1 ± 11.8 kg) consumed a caffeine containing multi-ingredient pre-workout supplement (SUPP) or color and flavor matched placebo (PL) 60 min prior to an acute RE bout of barbell back squats. Pre- and post-exercise muscle biopsies were analyzed for the phosphorylation (p-) of ß2AR, PKA, and MAPK (ERK, JNK, p38). Epinephrine was determined prior to supplementation (baseline; BL), after supplementation but prior to RE (PRE), and immediately after RE (POST). RESULTS: Epinephrine increased at PRE in SUPP (mean ± SE: 323 ± 34 vs 457 ± 68 pmol/l; p = 0.028), and was greatest at POST in the SUPP condition compared to PL (5140 ± 852 vs 2862 ± 498 pmol/l; p = 0.006). p-ß2AR and p-MAPK increased post-exercise (p < 0.05) with no differences between conditions (p > 0.05). Pearson correlations indicated there was a relationship between epinephrine and p-ß2AR in PL (r = - 0.810; p = 0.008), and p-ß2AR and ERK in SUPP (r = 0.941; p < 0.001). CONCLUSION: Consumption of a caffeine containing pre-workout supplement improves performance, possibly through increases in pre-exercise catecholamines. However, the acute myocellular signaling responses were largely similar post-exercise.


Assuntos
Cafeína , Treinamento Resistido , Masculino , Humanos , Adulto Jovem , Adulto , Resistência Física/fisiologia , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Adrenérgicos/farmacologia , Estudos Cross-Over , Suplementos Nutricionais , Epinefrina , Método Duplo-Cego
17.
Phytother Res ; 37(10): 4414-4428, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495266

RESUMO

The aim of this systematic review was to determine whether the supplementation with Rhodiola rosea (RR), an herb that has been used for centuries for its various properties, can have an effect on muscle damage and physical performance. The databases PubMed, Web of Science, and Cochrane Library were used to find studies published until March 2023. Randomized controlled trials, healthy participants, and no use of other supplements. The search strategy was conducted by two independent reviewers, and specific information was extracted from the selected studies. Thirteen studies were included with 263 participants (198 men and 65 women between 18 and 65 years old). Two studies followed acute supplementation, 5 chronic, and 6 combined both. The results were heterogenous, having 11 studies with some positive effects, while 2 studies show no effect in variables such as rating of perceive exertion, heart rate, antioxidant capacity, blood lactate, creatine kinase, or C-reactive protein. Two limitations were found, firstly, the difference between supplementation and exercise protocols, and secondly, the existence of unclear or high risk of bias in most of the studies included. Acute supplementation with RR has a positive effect on endurance performance and rating of perceived exertion (RPE). Chronic supplementation has a positive effect on anaerobic exercise performance, but not endurance exercise performance. Chronic supplementation may positively impact muscle damage during exercise. However, more high-quality studies are needed to firmly establish the clinical efficacy of RR.


Assuntos
Rhodiola , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antioxidantes , Suplementos Nutricionais , Exercício Físico/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Int J Sport Nutr Exerc Metab ; 33(1): 1-10, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109008

RESUMO

This study compared the recommended dose of sodium citrate (SC, 500 mg/kg body mass) and sodium bicarbonate (SB, 300 mg/kg body mass) for blood alkalosis (blood [HCO3-]) and gastrointestinal symptoms (GIS; number and severity). Sixteen healthy individuals ingested the supplements in a randomized, crossover design. Gelatin capsules were ingested over 15 min alongside a carbohydrate-rich meal, after which participants remained seated for forearm venous blood sample collection and completion of GIS questionnaires every 30 min for 300 min. Time-course and session value (i.e., peak and time to peak) comparisons of SC and SB supplementation were performed using linear mixed models. Peak blood [HCO3-] was similar for SC (mean 34.2, 95% confidence intervals [33.4, 35.0] mmol/L) and SB (mean 33.6, 95% confidence intervals [32.8, 34.5] mmol/L, p = .308), as was delta blood [HCO3-] (SC = 7.9 mmol/L; SB = 7.3 mmol/L, p = .478). Blood [HCO3-] was ≥6 mmol/L above baseline from 180 to 240 min postingestion for SC, significantly later than for SB (120-180 min; p < .001). GIS were mostly minor, and peaked 80-90 min postingestion for SC, and 35-50 min postingestion for SB. There were no significant differences for the number or severity of GIS reported (p > .05 for all parameters). In summary, the recommended doses of SC and SB induce similar blood alkalosis and GIS, but with a different time course.


Assuntos
Alcalose , Gastroenteropatias , Humanos , Ingestão de Alimentos , Bicarbonato de Sódio , Citrato de Sódio , Estudos Cross-Over
19.
Int J Sport Nutr Exerc Metab ; 33(5): 275-281, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414404

RESUMO

Although the ergogenic effects of 3-6 mg/kg caffeine are widely accepted, the efficacy of low doses of caffeine has been discussed. However, it is unclear whether the ergogenic effects of caffeine on jump performance are dose responsive in a wide range of doses. This study aimed to examine the effect of very low (1 mg/kg) to moderate doses of caffeine, including commonly utilized ergogenic doses (i.e., 3 and 6 mg/kg), on vertical jump performance. A total of 32 well-trained collegiate sprinters and jumpers performed countermovement jumps and squat jumps three times each in a double-blind, counterbalanced, randomized, crossover design. Participants ingested a placebo or 1, 3, or 6 mg/kg caffeine 60 min before jumping. Compared with the placebo, 6 mg/kg caffeine significantly enhanced countermovement jump (p < .001) and squat jump (p = .012) heights; furthermore, 1 and 3 mg/kg of caffeine also significantly increased countermovement jump height (1 mg/kg: p = .002, 3 mg/kg: p < .001) but not squat jump height (1 mg/kg: p = .436, 3 mg/kg: p = .054). There were no significant differences among all caffeine doses in both jumps (all p > .05). In conclusion, even at a dose as low as 1 mg/kg, caffeine improved vertical jump performance in a dose-independent manner. This study provides new insight into the applicability and feasibility of 1 mg/kg caffeine as a safe and effective ergogenic strategy for jump performance.


Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Humanos , Cafeína/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Método Duplo-Cego , Estudos Cross-Over
20.
Res Sports Med ; : 1-17, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924018

RESUMO

The objective was to evaluate the effects of acai supplementation (AS) on markers of muscle damage. Twelve men participated in the 21-day study. All performed the damage protocol (DP) in two moments, separated by 7 days. The DP consisted of 10 sets of 10 CMJs, with a recovery of 1 min between sets. The AS was performed for 7 days with 40 g/day of dehydrated acai (GA) or placebo (GP). Blood parameters (CK, LDH and Trolox-equivalent antioxidant capacity - TEAC) were evaluated at 0 h and 24 h. Ultrasound images (VL, RF and GM), DOMS in lower limbs and isometric peak torque (IPT) of knee extensors and flexors were evaluated at 0 h, 24 h, 48 h and 72 h after DP. A time-treatment interaction was observed for TEAC (p = 0.01), in which the GA presented increases of 11% after 24 h. Similarly, time-treatment interaction was observed for knee flexors IPT (p = 0.02), where GA showed superior recovery after 24 h (GA = 108 ± 23 vs. GP = 92 ± 24 N∙m) and 72 h (GA = 113 ± 31 vs. GP = 98 ± 26 N∙m). No significance was observed in the fatigue index for knee extensors (p = 0.75) and flexors (p = 0.89), indicating similar fatigue in both situations. We concluded that AS increased the TEAC and promoted faster recovery of the knee flexors IPT when compared to GP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA