RESUMO
Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.
Assuntos
Ciclo Estral/genética , Regulação da Expressão Gênica , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Agressão , Animais , Aromatase/metabolismo , Transtorno Autístico/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Comportamento SocialRESUMO
Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with â¼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.
Assuntos
Rede Nervosa/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Estrogênios/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Hormônios Esteroides Gonadais/farmacologia , Hipotálamo Anterior/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ovário/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Receptores de Progesterona/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de TempoRESUMO
Any experiment conducted in a rodent laboratory is done so against the backdrop of each animal's physiological state at the time of the experiment. This physiological state can be the product of multiple factors, both internal (e.g., animal sex, strain, hormone cycles, or circadian rhythms) and external (e.g., housing conditions, social status, and light/dark phases). Each of these factors has the potential to influence experimental outcomes, either independently or via interactions with others, and yet there is little consistency across laboratories in terms of the weight with which they are considered in experimental design. Such discrepancies-both in practice and in reporting-likely contribute to the perception of a reproducibility crisis in the field of behavioral neuroscience. In this review, we discuss how several of these sources of variability can impact outcomes within the realm of common learning and memory paradigms.
Assuntos
Laboratórios , Roedores , Animais , Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Reprodutibilidade dos TestesRESUMO
When rats are given discrete choices between social interactions with a peer and opioid or psychostimulant drugs, they choose social interaction, even after extensive drug self-administration experience. Studies show that like drug and nondrug food reinforcers, social interaction is an operant reinforcer and induces dopamine release. However, these studies were conducted with same-sex peers. We examined if peer sex influences operant social interaction and the role of estrous cycle and striatal dopamine in same- versus opposite-sex social interaction. We trained male and female rats (n = 13 responders/12 peers) to lever-press (fixed-ratio 1 [FR1] schedule) for 15â s access to a same- or opposite-sex peer for 16â d (8â d/sex) while tracking females' estrous cycle. Next, we transfected GRAB-DA2m and implanted optic fibers into nucleus accumbens (NAc) core and dorsomedial striatum (DMS). We then retrained the rats for 15â s social interaction (FR1 schedule) for 16â d (8â d/sex) and recorded striatal dopamine during operant responding for a peer for 8â d (4â d/sex). Finally, we assessed economic demand by manipulating FR requirements for a peer (10â d/sex). In male, but not female rats, operant responding was higher for the opposite-sex peer. Female's estrous cycle fluctuations had no effect on operant social interaction. Striatal dopamine signals for operant social interaction were dependent on the peer's sex and striatal region (NAc core vs DMS). Results indicate that estrous cycle fluctuations did not influence operant social interaction and that NAc core and DMS dopamine activity reflect sex-dependent features of volitional social interaction.
Assuntos
Condicionamento Operante , Dopamina , Ratos , Animais , Masculino , Feminino , Dopamina/farmacologia , Interação Social , Corpo Estriado , Inibidores da Captação de Dopamina/farmacologia , Núcleo AccumbensRESUMO
Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.
Assuntos
Células Epiteliais , Perfilação da Expressão Gênica , Glândulas Mamárias Animais , Maturidade Sexual , Células Estromais , Transcriptoma , Animais , Feminino , Camundongos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Células Estromais/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Maturidade Sexual/fisiologia , Proliferação de Células , Ciclo Estral/genéticaRESUMO
The estrous cycle is a potent modulator of neuron physiology. In rodents, in vivo ventral tegmental area (VTA) dopamine (DA) activity has been shown to fluctuate across the estrous cycle. Although the behavioral effect of fluctuating sex steroids on the reward circuit is well studied in response to drugs of abuse, few studies have focused on the molecular adaptations in the context of stress and motivated social behaviors. We hypothesized that estradiol fluctuations across the estrous cycle acts on the dopaminergic activity of the VTA to alter excitability and stress response. We used whole-cell slice electrophysiology of VTA DA neurons in naturally cycling, adult female C57BL/6J mice to characterize the effects of the estrous cycle and the role of 17ß-estradiol on neuronal activity. We show that the estrous phase alters the effect of 17ß-estradiol on excitability in the VTA. Behaviorally, the estrous phase during a series of acute variable social stressors modulates subsequent reward-related behaviors. Pharmacological inhibition of estrogen receptors in the VTA before stress during diestrus mimics the stress susceptibility found during estrus, whereas increased potassium channel activity in the VTA before stress reverses stress susceptibility found during estrus as assessed by social interaction behavior. This study identifies one possible potassium channel mechanism underlying the increased DA activity during estrus and reveals estrogen-dependent changes in neuronal function. Our findings demonstrate that the estrous cycle and estrogen signaling changes the physiology of DA neurons resulting in behavioral differences when the reward circuit is challenged with stress.SIGNIFICANCE STATEMENT The activity of the ventral tegmental area encodes signals of stress and reward. Dopaminergic activity has been found to be regulated by both local synaptic inputs as well as inputs from other brain regions. Here, we provide evidence that cycling sex steroids also play a role in modulating stress sensitivity of dopaminergic reward behavior. Specifically, we reveal a correlation of ionic activity with estrous phase, which influences the behavioral response to stress. These findings shed new light on how estrous cycle may influence dopaminergic activity primarily during times of stress perturbation.
Assuntos
Neurônios Dopaminérgicos , Ciclo Estral , Camundongos , Animais , Feminino , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/fisiologia , Ciclo Estral/fisiologia , Estrogênios/farmacologia , Estradiol/farmacologia , Comportamento Social , Mesencéfalo , Canais de Potássio , Área Tegmentar VentralRESUMO
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Assuntos
Sêmen , Útero , Gravidez , Animais , Feminino , Masculino , Útero/metabolismo , Endométrio , Ciclo Estral/fisiologia , Estro , MamíferosRESUMO
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Assuntos
Estradiol , Progesterona , Feminino , Humanos , Masculino , Progesterona/farmacologia , Estradiol/farmacologia , Hormônios Esteroides Gonadais , Aprendizagem , RecompensaRESUMO
Interactions between female metabolic status, immune response, and reproductive system functioning are complex and not fully understood. We hypothesized that chemerin, considered a hormonal link between the above-mentioned processes, influences endometrial functions, particularly cytokine secretion and signalling. Using porcine endometrial explants collected during early pregnancy and the estrous cycle, we investigated chemerin effects on the secretion of interleukins (IL-1ß, IL-6, IL-8), leukaemia inhibitory factor (LIF), tumour necrosis factor α (TNFα), transforming growth factor α (TGFα), and protein abundances of their respective receptors. Our results demonstrate chemerin modulation of cytokine secretion and receptor expression, with effects dependent on the stage of pregnancy and dose of chemerin. Furthermore, chemerin influences the phosphorylation of stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κß) in the endometrium. Chemerin multifaceted actions, such as involvement in immune response, cell proliferation, and tissue remodelling seem to be mediated by cytokines, at least in the endometrium. These findings underscore the potential crosstalk between chemerin and hormonal signalling pathways, providing insights into the complex mechanisms underlying early pregnancy establishment and maintenance.
RESUMO
The estrous cycle is known to modify food, fluid, and electrolyte intake behaviors and energy homeostasis in various species, in part through fluctuations in estrogen levels. Simultaneously, commonly commercially available rodent dietary formulations greatly vary in soy protein content, and thereby the delivery of biologically active phytoestrogens. To explore the interactions among the estrous cycle, sodium, fluid, and caloric seeking behaviors, and energy homeostasis, young adult C57BL/6J female mice were maintained on a soy protein-free 2920x diet and provided water, or a choice between water and 0.15 mol/L NaCl drink solution. Comprehensive metabolic phenotyping was performed using a multiplexed Promethion (Sable Systems International) system, and estrous stages were determined via daily vaginal cytology. When provided food and water, estrous cycling had no major modulatory effects on intake behaviors or energy balance. When provided a saline solution drink choice, significant modulatory effects of the transition from diestrus to proestrus were observed upon fluid intake patterning, locomotion, and total energy expenditure. Access to saline increased total daily sodium consumption and aspects of energy expenditure, but these effects were not modified by the estrous stage. Collectively, these results indicate that when supplied a phytoestrogen-free diet, the estrous cycle has minor modulatory effects on ingestive behaviors and energy balance in C57BL/6J mice that are sensitive to sodium supply.NEW & NOTEWORTHY When provided a phytoestrogen-free diet, the estrous cycle had very little effect on food and water intake, physical activity, or energy expenditure in C57BL/6J mice. In contrast, when provided an NaCl drink in addition to food and water, the estrous cycle was associated with changes in intake behaviors and energy expenditure. These findings highlight the complex interactions among estrous cycling, dietary formulation, and nutrient presentation upon ingestive behaviors and energy homeostasis in mice.
Assuntos
Fitoestrógenos , Cloreto de Sódio , Camundongos , Feminino , Animais , Fitoestrógenos/farmacologia , Camundongos Endogâmicos C57BL , Ciclo Estral , Dieta , Metabolismo Energético , Sódio , ÁguaRESUMO
OBJECTIVE: The objective was to critically analyze the published literature accounting for sex differences and skeletal age (open vs. closed physis) in preclinical animal models of OA, including the disaggregation of data by sex and skeletal maturity when data is generated from combined sex and/or multi-aged cohorts without proper confounding. METHOD: A scoping literature review of PubMed, Web of Science, EMBASE, and SCOPUS was performed for studies evaluating the effect of sex and age in experimental studies and clinical trials utilizing preclinical large animal models of OA. RESULTS: A total of 9727 papers were identified in large animal (dog, pig, sheep, goat, horse) models for preclinical OA research, of which 238 ex vivo and/or in vivo studies disclosed model type, animal species, sex, and skeletal age sufficient to analyze their effect on outcomes. Dogs, followed by pigs, sheep, and horses, were the most commonly used models. A paucity of preclinical studies evaluated the effect of sex and age in large animal models of naturally occurring or experimentally induced OA: 26 total studies reported some kind of analysis of the effects of sex or age, with 4 studies discussing the effects of sex only, 11 studies discussing the effects of age only, and 11 studies analyzing both the effects of age and sex. CONCLUSION: Fundamental to translational research, OARSI is uniquely positioned to develop recommendations for conducting preclinical studies using large animal models of OA that consider biological mechanisms linked to sex chromosomes, skeletal age, castration, and gonadal hormones affecting OA pathophysiology and treatment response.
Assuntos
Osteoartrite , Feminino , Masculino , Suínos , Animais , Ovinos , Cavalos , Cães , Modelos Animais de Doenças , Osteoartrite/veterinária , Cabras , Bibliometria , Lâmina de CrescimentoRESUMO
Hormonal contraceptives, including oral contraceptives (OCs), regulate hormonal cycles and broadly affect physiological processes, including stress responsivity. Whereas many users describe overall improved mood, up to 10 % of OC users experience adverse effects, including depression and anxiety. Given the link between regulation of hypothalamic-pituitary-adrenal (HPA) axis, stress exposure, and risk for depression, it is likely that OC-effects on stress mediate increased risk or increased resilience to these disorders. In this study, we developed and characterized a tractable mouse model of OC exposure with which to identify the mechanisms underlying OC modulation of brain, behavior, and mood. Specifically, we aimed to determine whether translationally relevant doses of OC-hormones in mice mimic changes in stress responsivity observed in humans taking OCs and describe behavioral changes during OC exposure. Young adult female C57Bl/6 N mice received daily ethinyl estradiol (EE) and levonorgestrel (LVNG) in 10 % sucrose, EE and drospirenone (DRSP) in 10 % sucrose, or 10 % sucrose alone. Translationally relevant doses of EE + LVNG-exposure, but not EE + DRSP, suppressed the acute stress response, consistent with effects observed in human OC users. EE + LVNG caused a specific anhedonia-like effect, without broad changes in stress-coping behavior, other depression-like behaviors, or anxiety-like behaviors. The suppression of regular estrous cycling, together with the blunting of the corticosterone response to acute stress, demonstrate the utility of this model for future studies to identify the mechanisms underlying OC interactions with stress, motivation, and risk for depression.
Assuntos
Anticoncepcionais Orais Combinados , Motivação , Humanos , Feminino , Animais , Camundongos , Depressão , Etinilestradiol/farmacologia , SacaroseRESUMO
Sex differences exist in numerous parameters of the brain. Yet, sex-related factors are part of a large set of variables that interact to affect many aspects of brain structure and function. This raises questions regarding how to interpret findings of sex differences at the level of single brain measures and the brain as a whole. In the present study, we reanalyzed two datasets consisting of measures of oxytocin, vasopressin V1a, and mu opioid receptor binding densities in multiple brain regions in rats. At the level of single brain measures, we found that sex differences were rarely dimorphic and were largely persistent across estrous stage and parental status but not across age or context. At the level of aggregates of brain measures showing sex differences, we tested whether individual brains are 'mosaics' of female-typical and male-typical measures or are internally consistent, having either only female-typical or only male-typical measures. We found mosaicism for measures showing overlap between females and males. Mosaicism was higher a) with a larger number of measures, b) with smaller effect sizes of the sex difference in these measures, and c) in rats with more diverse life experiences. Together, these results highlight the limitations of the binary framework for interpreting sex effects on the brain and suggest two complementary pathways to studying the contribution of sex to brain function: (1) focusing on measures showing dimorphic and persistent sex differences and (2) exploring the relations between specific brain mosaics and specific endpoints.
Assuntos
Encéfalo , Ocitocina , Feminino , Ratos , Masculino , Animais , Encéfalo/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Ligação Proteica , Caracteres SexuaisRESUMO
Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.
Assuntos
Modelos Animais de Doenças , Hipotálamo , Camundongos Endogâmicos C57BL , Animais , Feminino , Camundongos , Hipotálamo/metabolismo , Ciclo Estral/fisiologia , Saúde Reprodutiva , Transtorno Autístico/metabolismo , Transtorno Autístico/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Reprodução/fisiologia , Reprodução/genética , Progesterona/sangue , Progesterona/metabolismo , Estradiol/sangue , Estradiol/metabolismo , Masculino , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/sangueRESUMO
INTRODUCTION: Interoceptive stimuli elicited by drug administration acquire conditioned modulatory properties of the induction of conditioned appetitive behaviours by exteroceptive cues. This effect may be modeled using a drug discrimination task in which the drug stimulus is trained as a positive-feature (FP) occasion setter (OS) that disambiguates the relation between an exteroceptive light conditioned stimulus (CS) and a sucrose unconditioned stimulus (US). We previously reported that females are less sensitive to generalization of a FP morphine OS than males, so we investigated the role of endogenous ovarian hormones in this difference. METHODS: Male and female rats received intermixed injections of 3.2 mg/kg morphine or saline before each daily training session. Training consisted of 8 presentations of the CS, each followed by access to sucrose on morphine, but not saline sessions. Following acquisiton, rats were tested for generalization of the morphine stimulus to 0, 1.0, 3.2, and 5.4 mg/kg morphine. Female rats were monitored for estrous cyclicity using vaginal cytology throughout the study. RESULTS: Both sexes acquired stable drug discrimination. A gradient of generalization was measured across morphine doses and this behaviour did not differ by sex, nor did it differ across the estrous cycle in females. CONCLUSIONS: Morphine generalization is independent of fluctuations in levels of sex and endogenous gonadal hormones in females under these experimental conditions.
Assuntos
Ciclo Estral , Morfina , Animais , Feminino , Masculino , Ciclo Estral/fisiologia , Ciclo Estral/efeitos dos fármacos , Morfina/farmacologia , Ratos , Generalização Psicológica/efeitos dos fármacos , Generalização Psicológica/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Ratos Sprague-Dawley , Interocepção/fisiologia , Interocepção/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologiaRESUMO
Successful identification of estrum or other stages in a cycling bitch often requires a combination of methods, including assessment of its behavior, exfoliative vaginal cytology, vaginoscopy, and hormonal assays. Vaginoscopy is a handy and inexpensive tool for the assessment of the breeding period. The present study introduces an innovative method for identifying the stages in the estrous cycle of female canines. With a dataset of 210 vaginoscopic images covering four reproductive stages, this approach extracts deep features using the inception v3 and Residual Networks (ResNet) 152 models. Binary gray wolf optimization (BGWO) is applied for feature optimization, and classification is performed with the extreme gradient boosting (XGBoost) algorithm. Both models are compared with the support vector machine (SVM) with the Gaussian and linear kernel, k-nearest neighbor (KNN), and convolutional neural network (CNN), based on performance metrics such as accuracy, specificity, F1 score, sensitivity, precision, matthew correlation coefficient (MCC), and runtime. The outcomes demonstrate the superiority of the deep model of ResNet 152 with XGBoost classifier, achieving an average model accuracy of 90.37%. The method gave a specific accuracy of 90.91%, 96.38%, 88.37%, and 88.24% in predicting the proestrus, estrus, diestrus, and anestrus stages, respectively. When performing deep feature analysis using inception v3 with the same classifiers, the model achieved an accuracy of 89.41%, which is comparable to the results obtained with the ResNet model. The proposed model offers a reliable system for identifying the optimal mating period, providing breeders and veterinarians with an efficient tool to enhance the success of their breeding programs.
Assuntos
Aprendizado Profundo , Animais , Feminino , Cães , Ciclo Estral/fisiologia , Vagina , Máquina de Vetores de Suporte , Estro/fisiologiaRESUMO
BACKGROUND: While the urogenital microbiota has recently been characterized in healthy male and female dogs, the influence of sex hormones on the urogenital microbiome of bitches is still unknown. A deeper understanding of the cyclic changes in urinary and vaginal microbiota would allow us to compare the bacterial populations in healthy dogs and assess the impact of the microbiome on various urogenital diseases. Therefore, the aim of this study was to characterize and compare the urogenital microbiota during different phases of the estrous cycle in healthy female dogs. DNA extraction, 16 S rDNA library preparation, sequencing and informatic analysis were performed to determine the vaginal and urinary microbiota in 10 healthy beagle dogs at each phase of the estrous cycle. RESULTS: There were no significant differences in alpha and beta diversity of the urinary microbiota across the different cycle phases. Similarly, alpha diversity, richness and evenness of vaginal bacterial populations were not significantly different across the cycle phases. However, there were significant differences in vaginal beta diversity between the different cycle phases, except for between anestrus and diestrus. CONCLUSION: This study strongly suggests that estrogen influences the abundance of the vaginal microbiota in healthy female dogs, but does not appear to affect the urinary microbiome. Furthermore, our data facilitate a deeper understanding of the native urinary and vaginal microbiota in healthy female dogs.
Assuntos
Ciclo Estral , Microbiota , Vagina , Animais , Cães , Feminino , Vagina/microbiologia , Ciclo Estral/fisiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sistema Urinário/microbiologia , Urina/microbiologia , DNA Bacteriano/genéticaRESUMO
INTRODUCTION: This study aimed to investigate the microbial characteristics of yak uteri collected using intrauterine cotton swabs (CS) during different reproductive stages and the correlation of these microbial characteristics with reproductive status. METHODS: We used a macrogenomic approach to analyze the functional aspects of different microorganisms in samples collected during the pre-estrus, estrus, late estrus, and diestrus stages. RESULTS: The results revealed the presence of 1293 microbial genera and 3401 microbial species in the uteri of yaks at different reproductive stages. The dominant bacterial species varied across the different periods, with Micrococcus and Proteus being dominant during pre-estrus; Pseudomonas, Clostridium, Flavobacterium, Bacillus, and Staphylococcus during estrus; Acinetobacter, Bacillus and Proteus during late estrus; and Pseudomonas, Escherichia coli, and Proteus during diestrus. DISCUSSION: The primary functions of these bacteria are enriched in various metabolic pathways, including carbohydrate and amino acid metabolism, intracellular transport and secretion, post-translational protein modification, and drug resistance. These findings suggest that the microbial diversity in the uterus of yaks plays a crucial role in reproductive regulation and can help prevent reproductive tract-related diseases.
Assuntos
Estro , Útero , Feminino , Bovinos , Animais , Útero/metabolismo , ReproduçãoRESUMO
BACKGROUND: Saidi sheep are the most abundant ruminant livestock species in Upper Egypt, especially in the Assiut governorate. Sheep are one of the most abundant animals raised for food in Egypt. They can convert low-quality roughages into meat and milk in addition to producing fiber and hides therefore; great opportunity exists to enhance their reproduction. Saidi breed is poorly known in terms of reproduction. So this work was done to give more information on some hormonal, oxidative, and blood metabolites parameters in addition to histological, histochemical and immunohistochemical investigations of the ovary during follicular phase of estrous cycle. The present study was conducted on 25 healthy Saidi ewes for serum analysis and 10 healthy ewes for histological assessment aged 2 to 5 years and weighted (38.5 ± 2.03 kg). RESULTS: The follicular phase of estrous cycle in Saidi sheep was characterized by the presence of ovarian follicles in different stages of development and atresia in addition to regressed corpus luteum. Interestingly, apoptosis and tissue oxidative markers play a crucial role in follicular and corpus luteum regression. The most prominent features of the follicular phase were the presence of mature antral (Graafian) and preovulatory follicles as well as increased level of some blood metabolites and oxidative markers. Here we give a new schematic sequence of ovarian follicles in Saidi sheep and describing the features of different types. We also clarified that these histological pictures of the ovary was influenced by hormonal, oxidative and blood metabolites factors that characterizes the follicular phase of estrous cycle in Saidi sheep. CONCLUSION: This work helps to understanding the reproduction in Saidi sheep which assist in improving the reproductive outcome of this breed of sheep. These findings are increasingly important for implementation of a genetic improvement program and utilizing the advanced reproductive techniques as estrous synchronization, artificial insemination and embryo transfer.
Assuntos
Fase Folicular , Ovário , Feminino , Ovinos , Animais , Ovário/metabolismo , Folículo Ovariano , Corpo Lúteo , Ciclo EstralRESUMO
Reproductive hormones are essential to mating systems, behavior, fertility, gestation, parturition, and lactation in mammals and understanding the role of hormones in these processes is essential for species conservation. Sirenia is a unique order of marine mammals that include manatees, dugongs, and the extinct Steller's sea cow. Extant Sirenian species are all listed as vulnerable due to habitat loss, cold stress, boat strike trauma, harmful algal bloom toxicity, entanglements, and illegal hunting. Therefore, successful reproduction is essential to maintaining and increasing Sirenian populations. Understanding Sirenian reproductive behavior, endocrinology, and mating strategies will aid conservation and management efforts to protect and provide the proper conditions for successful reproduction. The objectives of this review were to synthesize the current knowledge regarding reproductive cycles and endocrinology of Sirenians and identify knowledge gaps for future investigation. The current literature on Sirenian reproductive physiology reports reproductive seasonality, sexual maturation, estrous cyclicity and acyclicity, pregnancy, and sex differences. However, there remain significant knowledge gaps on the cyclicity and pulsatile release of gonadotropins, maturation in females, and characterization of pregnancy hormone profiles throughout gestation. To date, there is no explanation for confirmed pattern for ovarian acyclicity, nor understanding of the function of the numerous accessory corpus luteum described in manatees. Research including a greater number of longitudinal and postmortem studies on a wider variety of wild manatee populations are important first steps. Taken together, understanding the reproductive endocrinology of these vulnerable and threatened species is critical for policy and management decisions to better inform protection initiatives.