Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Chem ; 110: 108037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460436

RESUMO

Cancer is the most prevalent disease globally, which presents a significant challenge to the healthcare industry, with breast and lung cancer being predominant malignancies. This study used RNA-seq data from the TCGA database to identify potential biomarkers for lung and breast cancer. Tumor Necrosis Factor (TNFAIP8) and Sulfite Oxidase (SUOX) showed significant expression variation and were selected for further study using structure-based drug discovery (SBDD). Compounds derived from the Euphorbia ammak plant were selected for in-silico study with both TNFAIP8 and SUOX. Stigmasterol had the greatest binding scores (normalized scores of -8.53 kcal/mol and -9.69 kcal/mol) with both proteins, indicating strong stability in their binding pockets throughout the molecular dynamics' simulation. Although Stigmasterol first changed its initial conformation (RMSD = 0.5 nm with the starting conformation) in SUOX, it eventually reached a stable conformation (RMSD of 1.5 nm). The compound on TNFAIP8 showed a persistent shape (RMSD of 0.35 nm), indicating strong protein stability. The binding free energy of the complex was calculated using the MM/GBSA technique; TNFAIP8 had a ΔGTOTAL of -24.98 kcal/mol, with TYR160 being the most significant residue, contributing -2.52 kcal/mol. On the other hand, the SUOX complex had a binding free energy of -16.87 kcal/mol, with LEU151 being the primary contributor (-1.17 kcal/mol). Analysis of the complexes' free energy landscape unveiled several states with minimum free energy, indicating robust interactions between the protein and ligand. In its conclusion, this work emphasises the favourable ability of Stigmasterol to bind with prospective targets for lung and breast cancer, indicating the need for more experimental study.


Assuntos
Neoplasias da Mama , Euphorbia , Neoplasias Pulmonares , Estigmasterol , Euphorbia/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Estigmasterol/química , Estigmasterol/farmacologia , Estigmasterol/análogos & derivados , Estigmasterol/isolamento & purificação , Feminino , Simulação de Dinâmica Molecular , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Estrutura Molecular , Termodinâmica , Simulação de Acoplamento Molecular
2.
Pak J Biol Sci ; 23(4): 552-560, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32363841

RESUMO

BACKGROUND AND OBJECTIVE: Euphorbia species have historically been used as medicinal plants to treat different ailments. However, some species have been reported to exhibit various degrees of toxicity. It becomes critical to distinguish toxic species from those that are non-toxic, for a particular application. The aim of the study was to determine the method for fingerprinting the chemical constituents of the selected toxic and non-toxic Euphorbia species to identify markers of toxicity. MATERIAL AND METHODS: Hexane, DCM, methanol, ethyl acetate and water plant extracts of Euphorbia ammak, clavarioides, caerulescens, polygona and trigona were investigated for their cytotoxic activities towards the mammalian Vero cell line using MTT cell viability test assay. The presence of secondary metabolites and proteins were assessed in the plant extracts. Moreover, the study used chromatographic methods to fingerprint the plant extracts to identify toxicity markers. RESULTS: The DCM extract of E. ammak exhibited the highest cell growth inhibition at all concentrations tested. The non-polar extracts of E. clavarioides exhibited the highest cell growth inhibition activity with hexane extract reaching IC50 at 1 µg mL-1. The DCM extract of E. caerulescens reached IC50 at a concentration of 10 µg mL-1, while other extracts didn't show any activity. The hexane and DCM extracts of E. polygona exhibited the highest cell growth inhibition activity, reaching IC50 at a concentration of 10 µg mL-1. All 4 extracts of E. trigona didn't show cell growth inhibition. All Euphorbia species showed the presence of secondary metabolites. The biuret and xanthoprotein methods indicated that there were no proteins detected in all 5 Euphorbia species. TLC profiles of toxic extracts revealed additional bands which were absent in non-toxic species. CONCLUSION: It is concluded that the TLC method developed in this study can be used as a quick screen method to possibly distinguish toxic from non-toxic species, as well as in identifying the studied species.


Assuntos
Cromatografia em Camada Fina , Euphorbia/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Euphorbia/classificação , Euphorbia/toxicidade , Concentração Inibidora 50 , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/toxicidade , Solventes/química , Células Vero
3.
Pharmacognosy Res ; 7(1): 14-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25598629

RESUMO

Investigation of the chloroform extract of Euphorbia ammak leaves led to the isolation of three compounds: euphol (1), α-glutinol (2) and stigmasterol (3) Their structures were elucidated by 1D and 2D NMR, as well as by comparison with the reported data. Compounds 1-3 exhibited cytotoxicity in vitro against human cervical adenocarcinoma (Hela), among which, compound 1 showed the best activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA