Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 271-294, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080919

RESUMO

Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.


Assuntos
Viroses , Vírus , Animais , Evolução Biológica , Humanos , Mutação , Proteínas Virais , Viroses/genética , Vírus/genética
2.
Cell ; 184(19): 4904-4918.e11, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433012

RESUMO

Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.


Assuntos
Proteína B de Centrômero/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Evolução Biológica , Sistemas CRISPR-Cas/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/química , Cromossomos de Mamíferos/metabolismo , Feminino , Heterocromatina/metabolismo , Cinetocoros/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oócitos/metabolismo , Domínios Proteicos
3.
Annu Rev Genet ; 53: 393-416, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31518518

RESUMO

Nearly half of the human genome consists of endogenous retroelements (EREs) and their genetic remnants, a small fraction of which carry the potential to propagate in the host genome, posing a threat to genome integrity and cell/organismal survival. The largest family of transcription factors in tetrapods, the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs), binds to specific EREs and represses their transcription. Since their first appearance over 400 million years ago, KRAB-ZFPs have undergone dramatic expansion and diversification in mammals, correlating with the invasions of new EREs. In this article we review our current understanding of the structure, function, and evolution of KRAB-ZFPs and discuss growing evidence that the arms race between KRAB-ZFPs and the EREs they target is a major driving force for the evolution of new traits in mammals, often accompanied by domestication of EREs themselves.


Assuntos
Imunidade Celular/fisiologia , Mamíferos/genética , Retroelementos , Dedos de Zinco/fisiologia , Animais , Regulação da Expressão Gênica , Impressão Genômica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Meiose , Família Multigênica , Domínios Proteicos
4.
Semin Cell Dev Biol ; 128: 51-60, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35346579

RESUMO

Despite the universal requirement for faithful chromosome segregation, eukaryotic centromeres are rapidly evolving. It is hypothesized that rapid centromere evolution represents an evolutionary arms race between selfish genetic elements that drive, or propagate at the expense of organismal fitness, and mechanisms that suppress fitness costs. Selfish centromere DNA achieves preferential inheritance in female meiosis by recruiting more effector proteins that alter spindle microtubule interaction dynamics. Parallel pathways for effector recruitment are adaptively evolved to suppress functional differences between centromeres. Opportunities to drive are not limited to female meiosis, and selfish transposons, plasmids and B chromosomes also benefit by maximizing their inheritance. Rapid evolution of selfish genetic elements can diversify suppressor mechanisms in different species that may cause hybrid incompatibility.


Assuntos
Centrômero , Eucariotos , Centrômero/genética , Segregação de Cromossomos/genética , Eucariotos/genética , Feminino , Humanos , Meiose/genética , Microtúbulos
5.
Ecol Lett ; 26(4): 490-503, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849224

RESUMO

Recent work has shown that animals frequently use social information from individuals of their own species as well as from other species; however, the ecological and evolutionary consequences of this social information use remain poorly understood. Additionally, information users may be selective in their social information use, deciding from whom and how to use information, but this has been overlooked in an interspecific context. In particular, the intentional decision to reject a behaviour observed via social information has received less attention, although recent work has indicated its presence in various taxa. Based on existing literature, we explore in which circumstances selective interspecific information use may lead to different ecological and coevolutionary outcomes between two species, such as explaining observed co-occurrences of putative competitors. The initial ecological differences and the balance between the costs of competition and the benefits of social information use potentially determine whether selection may lead to trait divergence, convergence or coevolutionary arms race between two species. We propose that selective social information use, including adoption and rejection of behaviours, may have far-reaching fitness consequences, potentially leading to community-level eco-evolutionary outcomes. We argue that these consequences of selective interspecific information use may be much more widespread than has thus far been considered.


Assuntos
Evolução Biológica , Animais , Fenótipo
6.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37655585

RESUMO

Echolocating bats use ultrasound for orientation and prey capture in darkness. Ultrasound is strongly attenuated in air. Consequently, aerial-hawking bats generally emit very intense echolocation calls to maximize detection range. However, call levels vary more than tenfold (>20 dB) between species and are tightly linked to the foraging strategy. The brown long-eared bat (Plecotus auritus) is a primarily gleaning, low-amplitude species that may occasionally hawk airborne prey. We used state-of-the-art calibrated acoustic 3D-localization and automated call analysis to measure P. auritus' source levels. Plecotus auritus emits echolocation calls of low amplitude (92 dB rmsSPL re. 20 µPa at 10 cm) even while flying in open-space. While P. auritus thus probably benefits from delayed evasive manoeuvres of eared insects, we propose that low-amplitude echolocation did not evolve as an adaptive countermeasure, but is limited by morphological constraints.


Assuntos
Quirópteros , Ecolocação , Mariposas , Animais , Comportamento Predatório , Acústica
7.
J Anim Ecol ; 92(12): 2363-2372, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882060

RESUMO

Body size is an important trait in predator-prey dynamics as it is often linked to detection, as well as the success of capture or escape. Larger prey, for example, often runs higher risk of detection by their predators, which imposes stronger selection on their anti-predator traits compared to smaller prey. Nocturnal Lepidoptera (moths) vary strongly in body size, which has consequences for their predation risk, as bigger moths return stronger echoes for echolocating bats. To compensate for increased predation risk, larger moths are therefore expected to have improved anti-predator defences. Moths are covered by different types of scales, which for a few species are known to absorb ultrasound, thus providing acoustic camouflage. Here, we assessed whether moths differ in their acoustic camouflage in a size-dependent way by focusing on their body scales and the different frequency ranges used by bats. We used a sonar head to measure 3D echo scans of a total of 111 moth specimens across 58 species, from eight different families of Lepidoptera. We scanned all the specimens and related their echo-acoustic target strength to various body size measurements. Next, we removed the scales covering the thorax and abdomen and scanned a subset of specimens again to assess the sound absorptive properties of these scales. Comparing intact specimens with descaled specimens, we found almost all species to absorb ultrasound, reducing detection risk on average by 8%. Furthermore, the sound absorptive capacities of body scales increased with body size suggesting that larger species benefit more from acoustic camouflage. The size-dependent effect of camouflage was in particular pronounced for the higher frequencies (above 29 kHz), with moth species belonging to large-bodied families consequently demonstrating similar target strengths compared to species from small-bodied families. Finally, we found the families to differ in frequency range that provided the largest reduction in detection risk, which may be related to differences in predation pressure and predator communities of these families. In general, our findings have important implications for predator-prey interactions across eco-evolutionary timescales and may suggest that acoustic camouflage played a role in body size evolution of nocturnally active Lepidoptera.


Assuntos
Quirópteros , Ecolocação , Mariposas , Animais , Acústica , Comportamento Predatório , Tamanho Corporal
8.
Proc Natl Acad Sci U S A ; 117(1): 610-618, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843890

RESUMO

APOBEC3 (A3) genes are members of the AID/APOBEC gene family that are found exclusively in mammals. A3 genes encode antiviral proteins that restrict the replication of retroviruses by inducing G-to-A mutations in their genomes and have undergone extensive amplification and diversification during mammalian evolution. Endogenous retroviruses (ERVs) are sequences derived from ancient retroviruses that are widespread mammalian genomes. In this study we characterize the A3 repertoire and use the ERV fossil record to explore the long-term history of coevolutionary interaction between A3s and retroviruses. We examine the genomes of 160 mammalian species and identify 1,420 AID/APOBEC-related genes, including representatives of previously uncharacterized lineages. We show that A3 genes have been amplified in mammals and that amplification is positively correlated with the extent of germline colonization by ERVs. Moreover, we demonstrate that the signatures of A3-mediated mutation can be detected in ERVs found throughout mammalian genomes and show that in mammalian species with expanded A3 repertoires, ERVs are significantly enriched for G-to-A mutations. Finally, we show that A3 amplification occurred concurrently with prominent ERV invasions in primates. Our findings establish that conflict with retroviruses is a major driving force for the rapid evolution of mammalian A3 genes.


Assuntos
Desaminases APOBEC/genética , Retrovirus Endógenos/genética , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Mamíferos/genética , Desaminases APOBEC/metabolismo , Animais , Retrovirus Endógenos/imunologia , Fósseis/virologia , Interações Hospedeiro-Patógeno/imunologia , Mamíferos/imunologia , Mamíferos/virologia , Mutação , Filogenia , Edição de RNA/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/imunologia , RNA Viral/metabolismo
9.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129200

RESUMO

Insects represent the main prey of spiders, and spiders and insects co-diversified in evolutionary history. One of the main features characterizing spiders is their web as a trap to capture prey. Phylogenetically, the cribellate thread is one of the earliest thread types that was specialized to capture prey. In contrast to other capture threads, it lacks adhesive glue and consists of nanofibres, which do not only adhere to insects via van der Waals forces but also interact with the insects' cuticular hydrocarbon (CHC) layer, thus enhancing adhesion. The CHC layer consists of multiple hydrocarbon types and is highly diverse between species. In this study, we show that CHC interaction with cribellate capture threads is affected by CHC composition of the insect. We studied the interaction in detail for four insect species with different CHC profiles and observed a differential migration of CHCs into the thread. The migration depends on the molecular structure of the hydrocarbon types as well as their viscosity, influenced by the ambient temperature during the interaction. As a consequence, adhesion forces to CHC layers differ depending on their chemical composition. Our results match predictions based on biophysical properties of hydrocarbons, and show that cribellate spiders can exert selection pressure on the CHC composition of their insect prey.


Assuntos
Aranhas , Animais , Evolução Biológica , Hidrocarbonetos , Insetos , Software
10.
Proc Biol Sci ; 288(1961): 20211137, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34702076

RESUMO

Movement of the embryo is essential for musculoskeletal development in vertebrates, yet little is known about whether, and why, species vary. Avian brood parasites exhibit feats of strength in early life as adaptations to exploit the hosts that rear them. We hypothesized that an increase in embryonic movement could allow brood parasites to develop the required musculature for these demands. We measured embryo movement across incubation for multiple brood-parasitic and non-parasitic bird species. Using a phylogenetically controlled analysis, we found that brood parasites exhibited significantly increased muscular movement during incubation compared to non-parasites. This suggests that increased embryo movement may facilitate the development of the stronger musculoskeletal system required for the demanding tasks undertaken by young brood parasites.


Assuntos
Parasitos , Adaptação Fisiológica , Animais , Evolução Biológica , Aves/parasitologia , Interações Hospedeiro-Parasita , Comportamento de Nidação , Reprodução
11.
Bioessays ; 40(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29446482

RESUMO

Similar to parasites, malignant cells exploit the host for energy, resources and protection, thereby impairing host health and fitness. Although cancer is widespread in the animal kingdom, its impact on life history traits and strategies have rarely been documented. Devil facial tumour disease (DFTD), a transmissible cancer, afflicting Tasmanian devils (Sarcophilus harrisii), provides an ideal model system to monitor the impact of cancer on host life-history, and to elucidate the evolutionary arms-race between malignant cells and their hosts. Here we provide an overview of parasite-induced host life history (LH) adaptations, then both phenotypic plasticity of LH responses and changes in allele frequencies that affect LH traits of Tasmanian devils in response to DFTD are discussed. We conclude that akin to parasites, cancer can directly and indirectly affect devil LH traits and trigger host evolutionary responses. Consequently, it is important to consider oncogenic processes as a selective force in wildlife.


Assuntos
Adaptação Fisiológica/genética , Carcinogênese/genética , Características de História de Vida , Marsupiais/genética , Neoplasias/genética , Característica Quantitativa Herdável , Alelos , Animais , Austrália , Carcinogênese/metabolismo , Carcinogênese/patologia , Face/patologia , Frequência do Gene , Marsupiais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Seleção Genética
12.
Oecologia ; 191(2): 285-294, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31494712

RESUMO

Parasitic infections elicit host defences that pose energetic trade-offs with other fitness-related traits. Bitterling fishes and unionid mussels are involved in a two-way parasitic interaction. Bitterling exploit mussels by ovipositing into their gills. In turn, mussel larvae (glochidia) develop on the epidermis and gills of fish. Hosts have evolved behavioural responses to reduce parasite load, suggesting that glochidia and bitterling parasitism are costly. We examined the energetic cost of parasitism on both sides of this relationship. We used intermittent flow-through respirometry to measure (1) standard metabolic rate (SMR) of individual duck mussels Anodonta anatina (a common bitterling host) before and during infection by embryos of the European bitterling Rhodeus amarus, and (2) SMR and maximum oxygen uptake (MO2max) of individual R. amarus before and during infection with glochidia of the Chinese pond mussel Sinanodonta woodiana (a mussel species that successfully infects bitterling). As predicted, we observed an increase in mussel SMR when infected by bitterling embryos and an increased SMR in glochidia-infected bitterling, though this was significantly mediated by the time post-infection. Contrary to our predictions, glochidia infection did not impair MO2max and the number of glochidia attached to gills positively (rather than negatively) correlated with MO2max. The results suggest that tolerance is the prevailing coping mechanism for both fish and mussels when infected, while resistance mechanisms appear to be confined to the behavioural level.


Assuntos
Cyprinidae , Parasitos , Animais , Interações Hospedeiro-Parasita , Oxigênio , Consumo de Oxigênio
13.
Retrovirology ; 15(1): 31, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636069

RESUMO

BACKGROUND: The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) gene family appears only in mammalian genomes. Some A3 proteins can be incorporated into progeny virions and inhibit lentiviral replication. In turn, the lentiviral viral infectivity factor (Vif) counteracts the A3-mediated antiviral effect by degrading A3 proteins. Recent investigations have suggested that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins, and have further proposed that the Vif-A3 interaction may help determine the co-evolutionary history of cross-species lentiviral transmission in mammals. RESULTS: Here we address the co-evolutionary relationship between two New World felids, the puma (Puma concolor) and the bobcat (Lynx rufus), and their lentiviruses, which are designated puma lentiviruses (PLVs). We demonstrate that PLV-A Vif counteracts the antiviral action of APOBEC3Z3 (A3Z3) of both puma and bobcat, whereas PLV-B Vif counteracts only puma A3Z3. The species specificity of PLV-B Vif is irrespective of the phylogenic relationships of feline species in the genera Puma, Lynx and Acinonyx. We reveal that the amino acid at position 178 in the puma and bobcat A3Z3 is exposed on the protein surface and determines the sensitivity to PLV-B Vif-mediated degradation. Moreover, although both the puma and bobcat A3Z3 genes are polymorphic, their sensitivity/resistance to PLV Vif-mediated degradation is conserved. CONCLUSIONS: To the best of our knowledge, this is the first study suggesting that the host A3 protein potently controls inter-genus lentiviral transmission. Our findings provide the first evidence suggesting that the co-evolutionary arms race between lentiviruses and mammals has occurred in the New World.


Assuntos
Citosina Desaminase/genética , Interações Hospedeiro-Patógeno/genética , Infecções por Lentivirus/transmissão , Infecções por Lentivirus/virologia , Lentivirus/fisiologia , Animais , Gatos , Citosina Desaminase/química , Citosina Desaminase/metabolismo , Resistência à Doença , Evolução Molecular , Produtos do Gene vif , Vírus da Imunodeficiência Felina/classificação , Vírus da Imunodeficiência Felina/genética , Lentivirus/classificação , Mutação com Perda de Função , Modelos Moleculares , Filogenia , Polimorfismo Genético , Conformação Proteica , Proteólise , Relação Estrutura-Atividade , Treonina/química , Treonina/genética
14.
J Gen Virol ; 99(5): 704-709, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611801

RESUMO

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) is a mammalian protein that restricts lentiviral replication. Various polymorphisms of mammalian APOBEC3 genes have been observed in humans, Old World monkeys and domestic cats; however, the genetic diversity of APOBEC3 genes in other mammals remains unaddressed. Here we identify a novel haplotype of the feline APOBEC3Z3 gene, an APOBEC3 gene that restricts feline immunodeficiency virus (FIV) replication, in a Eurasian lynx (Lynx lynx). Compared to the previously identified lynx APOBEC3Z3 (haplotype I), the new sequence (haplotype II) harbours two amino acid deletions (Q16 and H17) and a nonsynonymous substitution (R68Q). Interestingly, lynx APOBEC3Z3 haplotype II does not suppress FIV infectivity, whereas haplotype I does. Mutagenesis experiments further revealed that deleting two amino acids (Q16 and H17) causes anti-FIV activity loss. This report demonstrates that a naturally occurring APOBEC3 variant loses anti-lentiviral activity through the deletion of two amino acid residues.

15.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669904

RESUMO

Evolutionary theory predicts that the spread of cytoplasmic sex ratio distorters leads to the evolution of host nuclear suppressors, although there are extremely few empirical observations of this phenomenon. Here, we demonstrate that a nuclear suppressor of a cytoplasmic male killer has spread rapidly in a population of the green lacewing Mallada desjardinsi An M. desjardinsi population, which was strongly female-biased in 2011 because of a high prevalence of the male-killing Spiroplasma endosymbiont, had a sex ratio near parity in 2016, despite a consistent Spiroplasma prevalence. Most of the offspring derived from individuals collected in 2016 had 1 : 1 sex ratios in subsequent generations. Contrastingly, all-female or female-biased broods appeared frequently from crossings of these female offspring with males derived from a laboratory line founded by individuals collected in 2011. These results suggest near-fixation of a nuclear suppressor against male killing in 2016 and reject the notion that a non-male-killing Spiroplasma variant has spread in the population. Consistently, no significant difference was detected in mitochondrial haplotype variation between 2011 and 2016. These findings, and earlier findings in the butterfly Hypolimnas bolina in Samoa, suggest that these quick events of male recovery occur more commonly than is generally appreciated.


Assuntos
Evolução Biológica , Variação Genética , Insetos/microbiologia , Insetos/fisiologia , Razão de Masculinidade , Spiroplasma/fisiologia , Animais , Núcleo Celular/genética , Feminino , Insetos/genética , Japão , Masculino , Simbiose
16.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331087

RESUMO

The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease.IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals.


Assuntos
Desaminases APOBEC/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/genética , Desaminases APOBEC/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Gatos , Evolução Molecular , Produtos do Gene vif/genética , Interações Hospedeiro-Patógeno , Vírus da Imunodeficiência Felina/metabolismo , Vírus da Imunodeficiência Felina/patogenicidade , Virulência
17.
Proc Natl Acad Sci U S A ; 112(28): E3651-60, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26056261

RESUMO

Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrA(O)) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrA(O) strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.


Assuntos
Beauveria/enzimologia , Benzoquinonas/metabolismo , Interações Hospedeiro-Patógeno , Oxirredutases/metabolismo , Tribolium/metabolismo , Animais , Beauveria/patogenicidade , Mutação , Oxirredutases/genética , Tribolium/patogenicidade , Virulência
18.
Retrovirology ; 14(1): 31, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482907

RESUMO

Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are mammalian-specific cellular deaminases and have a robust ability to restrain lentivirus replication. To antagonize APOBEC3-mediated antiviral action, lentiviruses have acquired viral infectivity factor (Vif) as an accessory gene. Mammalian APOBEC3 proteins inhibit lentiviral replication by enzymatically inserting G-to-A hypermutations in the viral genome, whereas lentiviral Vif proteins degrade host APOBEC3 via the ubiquitin/proteasome-dependent pathway. Recent investigations provide evidence that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins. In corollary, mammalian APOBEC3 genes are under Darwinian selective pressure to escape from antagonism by Vif. Based on these observations, it is widely accepted that lentiviral Vif and mammalian APOBEC3 have co-evolved and this concept is called an "evolutionary arms race." This review provides a comprehensive summary of current knowledge with respect to the evolutionary dynamics occurring at this pivotal host-virus interface.


Assuntos
Citidina Desaminase/genética , Citosina Desaminase/genética , Evolução Molecular , Genes vif , Lentivirus/genética , Desaminases APOBEC , Animais , Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , HIV-1 , Interações Hospedeiro-Patógeno , Humanos , Mamíferos/virologia , Seleção Genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
19.
Microbiol Immunol ; 60(6): 427-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27193350

RESUMO

Mammals have co-evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti-viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core-binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi-Visna virus [MVV]). However, the co-evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif-mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co-factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co-factor in degradation of ovine and caprine APOBEC3.


Assuntos
Vírus da Artrite-Encefalite Caprina/genética , Ciclofilina A/genética , Ciclofilina A/metabolismo , Citidina Desaminase/metabolismo , Produtos do Gene vif/genética , Produtos do Gene vif/metabolismo , Animais , Vírus da Artrite-Encefalite Caprina/metabolismo , Células Cultivadas , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citidina Desaminase/genética , Evolução Molecular , Cabras , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interleucina-2/genética , Filogenia , Ovinos
20.
Proc Natl Acad Sci U S A ; 110(51): 20633-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24248337

RESUMO

Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.


Assuntos
Carbono/metabolismo , Diatomáceas/fisiologia , Ecossistema , Ferro/metabolismo , Oceanos e Mares , Fitoplâncton/fisiologia , Silício/metabolismo , Regiões Antárticas , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA