Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Psychol ; 13: 818149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35140670

RESUMO

Chromatic induction is a major contextual effect of color appearance. Patterned backgrounds are known to induce strong chromatic induction effects. However, it has not been clarified whether the spatial extent of the chromatic surrounding induces a chromatic contrast or assimilation effects. In this study, we examined the influence of the width of a center line and its flanking white contour on the color appearance when the line was surrounded by chromatic backgrounds. A strong color shift was observed when the center line was flanked by white contours with the L/M- and S-cone chromatic backgrounds. There was a difference between the optimal widths of the center line and the contour for the shift in color appearance for the L/M-cone chromaticity (0.9 and 1.1-1.7 min, respectively) and the S-cone chromaticity (8.2-17.5 and 0.9-2.5 min, respectively). The optimal width of the center line for the L/M-cone was finer than the resolution-limit width of the chromatic contrast sensitivity and coarser than that of the luminance contrast sensitivity. Thus, the color appearance of the center line could be obtained by integrating broad chromatic information and fine luminance details. Due to blurring and chromatic aberrations, the simulated artifact was large for the darker center line and S-cone background, thus suggesting that the artifact could explain the luminance dependency of the induction along the S-cone chromaticity. Moreover, the findings of this study reveal that the dominant factor of the color shift is neural instead of optical.

2.
Comput Methods Programs Biomed ; 114(3): 302-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24713524

RESUMO

We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images.


Assuntos
Olho/anatomia & histologia , Retina/fisiologia , Algoritmos , Gráficos por Computador , Simulação por Computador , Computadores , Humanos , Imageamento por Ressonância Magnética , Óptica e Fotônica , Refratometria , Software , Visão Ocular
3.
Psychol. neurosci. (Impr.) ; 4(1): 7-9, Jan.-June 2011. ilus
Artigo em Inglês | LILACS | ID: lil-604529

RESUMO

This paper reports the results that are part of a series of experiments designed to evaluate aspects of the spatial resolution of the visual system of the opossum, Didelphis marsupialis aurita. This nocturnal marsupial presents a well-developed eye, displaying features that reflect specialization for operation at low levels of luminosity. The species was shown to be slightly myopic, a feature that may prove to be valuable because of the increased depth of field. Opossum visual acuity has been previously evaluated by means of determining the Contrast Sensitivity Function (CSF). The results indicate rather poor visual acuity compared with other nocturnal animals. In this paper, we describe the results obtained for the optical quality of the opossum's eye using a single-pass method. The results suggest that the opossum's optical system is capable of forming images that can be resolved when separated by an angular distance on the order of 6 minutes of arc.


Assuntos
Animais , Sensibilidades de Contraste , Gambás , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA