Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 715: 150005, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678785

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder among women of reproductive age, is characterized by disturbances in hormone levels and ovarian dysfunction. Ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. Emerging evidence indicates that ferroptosis may have a significant role in the pathogenesis of PCOS, highlighting the importance of studying this mechanism to better understand the disorder and potentially develop novel therapeutic interventions. METHODS: To create an in vivo PCOS model, mice were injected with dehydroepiandrosterone (DHEA) and the success of the model was confirmed through further assessments. Ferroptosis levels were evaluated through detecting ferroptosis-related indicators. Ferroptosis-related genes were found through bioinformatic analysis and identified by experiments. An in vitro PCOS model was also established using DHEA treated KGN cells. The molecular binding relationship was confirmed using a chromatin immunoprecipitation (ChIP) assay. RESULTS: In PCOS model, various ferroptosis-related indicators such as MDA, Fe2+, and lipid ROS showed an increase, while GSH, GPX4, and TFR1 exhibited a decrease. These findings indicate an elevated level of ferroptosis in the PCOS model. The ferroptosis-related gene FADS2 was identified and validated. FADS2 and PPAR-α were shown to be highly expressed in ovarian tissue and primary granulosa cells (GCs) of PCOS mice. Furthermore, the overexpression of both FADS2 and PPAR-α in KGN cells effectively suppressed the DHEA-induced increase in ferroptosis-related indicators (MDA, Fe2+, and lipid ROS) and the decrease in GSH, GPX4, and TFR1 levels. The ferroptosis agonist erastin reversed the suppressive effect, suggesting the involvement of ferroptosis in this process. Additionally, the FADS2 inhibitor SC26196 was found to inhibit the effect of PPAR-α on ferroptosis. Moreover, the binding of PPAR-α to the FADS2 promoter region was predicted and confirmed. This indicates the regulatory relationship between PPAR-α and FADS2 in the context of ferroptosis. CONCLUSIONS: Our study indicates that PPAR-α may have an inhibitory effect on DHEA-induced ferroptosis in GCs by enhancing the expression of FADS2. This discovery provides valuable insights into the pathophysiology and potential therapeutic targets for PCOS.


Assuntos
Ácidos Graxos Dessaturases , Ferroptose , Células da Granulosa , PPAR alfa , Síndrome do Ovário Policístico , Regulação para Cima , Animais , Feminino , Camundongos , Desidroepiandrosterona/farmacologia , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Regulação para Cima/efeitos dos fármacos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
2.
J Lipid Res ; 64(6): 100376, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085033

RESUMO

The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.


Assuntos
Ácidos Graxos , Insulinas , Camundongos , Masculino , Animais , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos Knockout , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Peso Corporal , Insulinas/metabolismo , Tecido Adiposo/metabolismo
3.
Am J Physiol Endocrinol Metab ; 324(3): E241-E250, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696599

RESUMO

Delta-6 desaturase (D6D), encoded by the Fads2 gene, catalyzes the first step in the conversion of α-linolenic acid to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ablation of D6D in whole body Fads2-/- knockout (KO) mice results in an inability to endogenously produce EPA and DHA. Evidence supports a beneficial role for EPA and DHA on insulin-stimulated glucose disposal in skeletal muscle in the context of a metabolic challenge; however, it is unknown how low EPA and DHA levels impact skeletal muscle fatty acid composition and insulin signaling in a healthy context. The objective of this study was to examine the impact of ablating the endogenous production of EPA and DHA on skeletal muscle fatty acid composition, whole body glucose and insulin tolerance, and a key marker of skeletal muscle insulin signaling (pAkt). Male C57BL/6J wild-type (WT), Fads2+/- heterozygous, and Fads2-/- KO mice were fed a low-fat diet (16% kcal from fat) modified to contain either 7% w/w lard or 7% w/w flaxseed for 21 wk. No differences in total phospholipid (PL), triacylglycerol, or reactive lipid content were observed between genotypes. As expected, KO mice on both diets had significantly less DHA content in skeletal muscle PL. Despite this, KO mice did not have significantly different glucose or insulin tolerance compared with WT mice on either diet. Basal pAktSer473 was not significantly different between the genotypes within each diet. Ultimately, this study shows for the first time, to our knowledge, that the reduction of DHA in skeletal muscle is not necessarily detrimental to glucose homeostasis in otherwise healthy animals.NEW & NOTEWORTHY Skeletal muscle is the primary location of insulin-stimulated glucose uptake. EPA and DHA supplementation has been observed to improve skeletal muscle insulin-stimulated glucose uptake in models of metabolic dysfunction. Fads2-/- knockout mice cannot endogenously produce long-chain n-3 polyunsaturated fatty acids. Our results show that the absence of DHA in skeletal muscle is not detrimental to whole body glucose homeostasis in healthy mice.


Assuntos
Ácidos Docosa-Hexaenoicos , Intolerância à Glucose , Camundongos , Masculino , Animais , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Ácido Eicosapentaenoico , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Fosfolipídeos , Intolerância à Glucose/metabolismo , Glucose/metabolismo , Camundongos Knockout
4.
Exp Dermatol ; 32(6): 808-821, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843338

RESUMO

Sebum is a lipid-rich mixture secreted by the sebaceous gland (SG) onto the skin surface. By penetrating through the epidermis, sebum may be involved in the regulation of epidermal and dermal cells in both healthy and diseased skin conditions. Saturated and monounsaturated fatty acids (FAs), found as free FAs (FFAs) and in bound form in neutral lipids, are essential constituents of sebum and key players of the inflammatory processes occurring in the pilosebaceous unit in acne-prone skin. Little is known on the interplay among uptake of saturated FFAs, their biotransformation, and induction of proinflammatory cytokines in sebocytes. In the human SG, palmitate (C16:0) is the precursor of sapienate (C16:1n-10) formed by insertion of a double bond (DB) at the Δ6 position catalysed by the fatty acid desaturase 2 (FADS2) enzyme. Conversely, palmitoleate (C16:1n-7) is formed by insertion of a DB at the Δ9 position catalysed by the stearoyl coenzyme A desaturase 1 (SCD1) enzyme. Other FFAs processed in the SG, also undergo these main desaturation pathways. We investigated lipogenesis and release of IL-6 and IL-8 pro-inflammatory cytokines in SZ95 sebocytes in vitro after treatment with saturated FFAs, that is, C16:0, margarate (C17:0), and stearate (C18:0) with or without specific inhibitors of SCD1 and FADS2 desaturase enzymes, and a drug with mixed inhibitory effects on FADS1 and FADS2 activities. C16:0 underwent extended desaturation through both SCD1 and FADS2 catalysed pathways and displayed the strongest lipoinflammatory effects. Inhibition of desaturation pathways proved to enhance lipoinflammation induced by SFAs in SZ95 sebocytes. Palmitate (C16:0), margarate (C17:0), and stearate (C18:0) are saturated fatty acids that induce different arrays of neutral lipids (triglycerides) and dissimilar grades of inflammation in sebocytes.


Assuntos
Ácidos Graxos , Estearatos , Humanos , Ácidos Graxos/metabolismo , Estearatos/metabolismo , Glândulas Sebáceas/metabolismo , Citocinas/metabolismo , Palmitatos/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Ácidos Graxos Dessaturases/metabolismo
5.
Oecologia ; 203(3-4): 477-489, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975885

RESUMO

Long-chain polyunsaturated fatty acids (PUFA) are critical for reproduction and thermal adaptation. Year-round variability in the expression of fads2 (fatty acid desaturase 2) in the liver of European perch (Perca fluviatilis) in a boreal lake was tested in relation to individual variation in size, sex, and maturity, together with stable isotopes values as well as fatty acids (FA) content in different tissues and prey items. ARA and DHA primary production was restricted to the summer months, however, perch required larger amounts of these PUFA during winter, as their ARA and DHA muscle content was higher compared to summer. The expression of fads2 in perch liver increased during winter and was higher in mature females. Mature females stored DHA in their gonads already in late summer and autumn, long before the upcoming spring spawning period in May. Lower δ13CDHA values in the gonads in September suggest that these females actively synthesized DHA as part of this reproductive investment. Lower δ13CARA values in the liver of all individuals during winter suggest that perch were synthesizing essential FA to help cope with over-wintering conditions. Perch seem able to modulate its biosynthesis of physiologically required PUFA in situations of stress (fasting or cold temperatures) or in situations of high energetic demand (gonadal development). Biosynthesis of physiologically required PUFA may be an important part of survival and reproduction in aquatic food webs with long cold periods.


Assuntos
Ácidos Graxos , Percas , Humanos , Animais , Ácidos Graxos/metabolismo , Percas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Cadeia Alimentar
6.
Lipids Health Dis ; 22(1): 25, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788618

RESUMO

BACKGROUND: Previous studies have demonstrated the important role of fatty acid desaturase 2 (FADS2) in governing tumorigenesis and tumor metastasis. Although FADS2 is an essential regulator of fatty acid metabolism, its prognostic and immunotherapeutic value remains uncertain. METHODS: The role of FADS2 was investigated across different types of tumors. Besides, the relationship between FADS2 and survival prognosis, clinicopathologic features, tumor-infiltrating immune cells, immunoregulatory genes, chemokines, chemokines receptor, tumor mutational burden (TMB), and microsatellite instability (MSI) was also explored. FADS2-related genes enrichment analysis was performed to further explore the molecular function of FADS2. Finally, the relationship between FADS2 expression and altered functional states in single-cell levels across different tumor cells was explored. RESULTS: FADS2 was increased in most tumor tissues. Elevated FADS2 expression was associated with a poor overall survival (OS) and disease-free survival (DFS). FADS2 amplification was germane to worse progress-free survival (PFS). In addition, FADS2 correlated with the majority of tumor-infiltrating immune cells, immunoregulatory genes, and chemokines. Especially, FADS2 expression positively correlated with cancer-associated fibroblast (CAFs) infiltration. Gene Ontology and KEGG analysis demonstrated that FADS2 was involved in the fatty acid metabolic process, arachidonic acid metabolism, RAS, PPAR, and VEGF pathway. FADS2 had a positive relationship with tumor biological behaviors such as inflammation, cell cycle, proliferation, DNA damage, and DNA repair response in single-cell levels. CONCLUSIONS: FADS2 can serve as a potential prognostic and immunotherapeutic biomarker for multiple tumors, revealing new insights and evidence for cancer treatment.


Assuntos
Ácidos Graxos Dessaturases , Neoplasias , Transcriptoma , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/genética , Metabolismo dos Lipídeos , Transcriptoma/genética , Humanos , Neoplasias/enzimologia , Neoplasias/genética
7.
Anim Genet ; 53(3): 422-426, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35292995

RESUMO

As a member of the fatty acid desaturase family, fatty acid desaturase 2 (FADS2) gene is a rate-limiting enzyme in the synthesis of unsaturated fatty acids and within/near to the reported QTL regions for milk-production traits. We previously found that FADS2 is differentially expressed during different lactations of Chinese Holstein cows, and participates in lipid metabolic processes by influencing the insulin, PI3K-Akt, MAPK, AMPK, mTOR and PPAR signaling pathways. Therefore, we considered this gene as a candidate gene for milk-production traits. In this study, we identified 12 SNPs in FADS2 by re-sequencing, including two SNPs in the 5' flanking region, one in the seventh exon, five in introns, two in the 3' untranslated region and two in the 3' flanking region. The 29:g.40378819C>T is a missense mutation that causes alanine (GCG) to be replaced with valine (GTG). Through single marker association analysis, we found that all of the 12 SNPs were significantly associated with 305 day milk yield, fat yield, fat percentage, protein yield or protein percentage (p < 0.0493). The results of the subsequent haplotype association analysis also confirmed the associations between the gene and milk-production traits. In summary, this study suggests that there is a significant genetic association between FADS2 and milk-production traits, and that the SNPs with significant genetic effects can provide important molecular information for the development of a genomic selection chip in dairy cattle.


Assuntos
Leite , Fosfatidilinositol 3-Quinases , Regiões 3' não Traduzidas , Animais , Bovinos/genética , China , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Feminino , Lactação/genética , Leite/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polimorfismo de Nucleotídeo Único
8.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555340

RESUMO

The imbalance in polyunsaturated fatty acid (PUFA) composition in human food is ubiquitous and closely related to obesity and cardiovascular diseases. The development of n-3 PUFA-enriched poultry products is of great significance for optimizing fatty acid composition. This study aimed to improve our understanding of the effects of dietary linseed oil on hepatic metabolism using untargeted metabolomics and 4D label-free proteome analysis. A total of 91 metabolites and 63 proteins showed differences in abundance in duck livers between the high linseed oil and control groups. Pathway analysis revealed that the biosynthesis of unsaturated fatty acids, linoleic acid, glycerophospholipid, and pyrimidine metabolisms were significantly enriched in ducks fed with linseed oil. Meanwhile, dietary linseed oil changed liver fatty acid composition, which was reflected in the increase in the abundance of downstream metabolites, such as α-linolenic acid (ALA; 18:3n-3) as a substrate, including n-3 PUFA and its related glycerophospholipids, and a decrease in downstream n-6 PUFA synthesis using linoleic acid (LA; 18:2n-6) as a substrate. Moreover, the anabolism of PUFA in duck livers showed substrate-dependent effects, and the expression of related proteins in the process of fatty acid anabolism, such as FADS2, LPIN2, and PLA2G4A, were significantly regulated by linseed oil. Collectively, our work highlights the ALA substrate dependence during n-3 PUFA synthesis in duck livers. The present study expands our knowledge of the process products of PUFA metabolism and provides some potential biomarkers for liver health.


Assuntos
Gorduras Insaturadas na Dieta , Ácidos Graxos Ômega-3 , Linho , Animais , Humanos , Óleo de Semente do Linho/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Patos , Linho/metabolismo , Proteômica , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Ácido Linoleico/metabolismo
9.
Biochem Cell Biol ; 99(6): 725-734, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738827

RESUMO

Delta-6-desaturase (D6D) activity is deficient in MCF-7 and other cancer cell lines, but it is not explained by FADS2 gene mutations. This deficient activity was not ameliorated by induction of the FADS2 gene; therefore, we hypothesized that some of the induced FADS2 transcript variants (tv) may play a negative regulatory role. FADS2_tv1 is the reference FADS2 tv, coding for full-length D6D isoform 1 (D6D-iso1), and alternative transcriptional start sites result in FADS2_tv2 and FADS2_tv3 variants encoding D6D-iso2 and D6D-iso3 isoforms, respectively, which lack the catalytically critical N-terminal domain. In MCF-7 cells, FADS2_tv2 and FADS2_tv3 were expressed at significantly higher levels than FADS2_tv1. Overexpression of FADS2_tv2 in HEK293 cells confirmed that D6D-iso2 is non-functional, and co-transfection demonstrated a dominant-negative role for D6D-iso2 in D6D-iso1 activity regulation. FADS2_tv2 was expressed at higher levels than FADS2_tv1 in HeLa, MDA-MB-435, MCF-10 A, and HT-29 cells, but at lower levels in A549, MDA-MB-231, and LNCaP cells. Overexpression studies indicated roles for FADS2 variants in proliferation and apoptosis regulation, which were also cell-line specific. Increased FADS2_tv2 expression provides a new mechanism to help explain deficient D6D activity in MCF-7 and other cancer cell lines, but it is not a hallmark of malignant cells.


Assuntos
Ácidos Graxos Dessaturases , Linoleoil-CoA Desaturase/metabolismo , Ácidos Graxos Dessaturases/genética , Células HEK293 , Humanos , Isoformas de Proteínas
10.
J Nutr ; 151(7): 1834-1843, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982073

RESUMO

BACKGROUND: Methods to increase the amount of omega-3 (n-3) PUFAs in milk are desirable for neonatal health. The n-3 PUFA, α-linolenic acid (18:3n-3), can be elongated to EPA (20:5n-3) and DHA (22:6n-3). n-6 PUFAs suppress tissue n-3 PUFA incorporation, but the effect of SFAs is not clear. OBJECTIVES: In this study, we compared the effects of SFAs and n-6 PUFAs on n-3 PUFA incorporation into milk and tissues of lactating mice and tissues of their offspring. METHODS: Female CD-1 mice were bred at 8 wk of age. All experimental diets included 3% flaxseed oil and were begun on day 8 of lactation: low-fat diet (LFD); high-SFA diet (SAT), with an additional 12% saturated oil; or high-linoleic-acid diet (HLA), with 12% high-linoleic-acid oil (% kcal, carbohydrates:fat:protein: LFD, 49:24:27; both SAT and HLA, 35:46:19; n = 5/treatment). After 5 d, pup stomach milk clot FA profiles, tissue FA profiles in dams and pups, and mammary and hepatic expression of lipid metabolism genes in dams were analyzed. Data were analyzed by ANOVA with treatment diet as a fixed effect. RESULTS: Dams in all groups had similar total milk fat concentrations, but both SAT and HLA decreased the concentration of n-3 PUFAs (SAT: -23%; HLA: -31%) compared with LFD, and HLA increased milk n-6 FAs by 347% compared with SAT. SAT pups had n-3 PUFA tissue concentrations similar to LFD, but HLA pups had lower n-3 PUFAs than SAT pups in multiple tissues (liver, -32%; kidney, -29%; heart, -28%; muscle, -18%). Mammary expression of lipid metabolism genes was mostly unchanged, but hepatic expression of elongases and desaturases was decreased with SAT compared with LFD [elongation of very-long-chain fatty acid (Elov)5, -42%; Elov6, -64%; fatty acid desaturase (Fads)1, -33%; Fads2, -44%]. CONCLUSIONS: HLA decreased n-3 PUFA concentrations across multiple pup tissues compared with SAT. This suggests that high dietary n-6 PUFAs suppress n-3 PUFA incorporation in neonates.


Assuntos
Ácidos Graxos Ômega-3 , Lactação , Animais , Dieta , Ácidos Graxos , Ácidos Graxos Ômega-6 , Feminino , Camundongos , Leite
11.
Mar Drugs ; 19(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946805

RESUMO

Fish vary in their ability to biosynthesise long-chain polyunsaturated fatty acids (LC-PUFA) depending upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. It has been reported in Solea senegalensis the existence of a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid (DHA) from eicosapentaenoic acid (EPA), which can be modulated by the diet. The present study aims to evaluate the combined effects of the partial replacement of fish oil (FO) with vegetable oils and reduced environmental salinity in the fatty acid composition of relevant body compartments (muscle, hepatocytes and enterocytes), the enzymatic activity over α-linolenic acid (ALA) to form n-3 LC-PUFA through the incubation of isolated hepatocytes and enterocytes with [1-14C] 18:3 n-3, and the regulation of the S. senegalensis fads2 and elovl5 in the liver and intestine. The presence of radiolabelled products, including 18:4n-3, 20:4n-3 and EPA, provided compelling evidence that a complete pathway enabling the biosynthesis of EPA from ALA, establishing S. senegalensis, has at least one Fads2 with ∆6 activity. Dietary composition prevailed over salinity in regulating the expression of fads2, while salinity did so over dietary composition for elovl5. FO replacement enhanced the proportion of DHA in S. senegalensis muscle and the combination with 20 ppt salinity increased the amount of n-3 LC-PUFA in hepatocytes.


Assuntos
Gorduras na Dieta/metabolismo , Ecossistema , Ácidos Graxos Ômega-3/biossíntese , Óleos de Peixe/metabolismo , Linguados/metabolismo , Óleos de Plantas/metabolismo , Ração Animal , Animais , Aquicultura , Gorduras na Dieta/administração & dosagem , Enterócitos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Óleos de Peixe/administração & dosagem , Hepatócitos/metabolismo , Músculos/metabolismo , Óleos de Plantas/administração & dosagem , Salinidade , Fatores de Tempo , Água/química
12.
J Exp Biol ; 223(Pt 23)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33077642

RESUMO

Environmental factors such as nutritional interventions during early developmental stages affect and establish long-term metabolic changes in all animals. Diet during the spawning period has a nutritional programming effect in offspring of gilthead seabream and affects long-term metabolism. Studies showed modulation of genes such as fads2, which is considered to be a rate-limiting step in the synthesis of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). However, it is still unknown whether this adaptation is related to the presence of precursors or to limitations in the pre-formed products, n-3 LC-PUFA, contained in the diets used during nutritional programming. This study investigated the combined effects of nutritional programming on Sparusaurata through broodstock diets during the spawning period and in broodfish showing higher or lower fads2 expression levels in the blood after 1 month of feeding with a diet containing high levels of plant protein sources and vegetable oils (VM/VO). Broodfish showing high fads2 expression had a noticeable improvement in spawning quality parameters as well as in the growth of 6 month old offspring when challenged with a high VM/VO diet. Further, nutritional conditioning with 18:3n-3-rich diets had an adverse effect in comparison to progeny obtained from fish fed high fish meal and fish oil (FM/FO) diets, with a reduction in growth of juveniles. Improved growth of progeny from the high fads2 broodstock combined with similar muscle fatty acid profiles is also an excellent option for tailoring and increasing the flesh n-3 LC-PUFA levels to meet the recommended dietary allowances for human consumption.


Assuntos
Dourada , Ração Animal/análise , Animais , Dieta/veterinária , Ácidos Graxos Dessaturases/genética , Ácidos Graxos , Óleos de Peixe , Humanos , Lactente , Fígado , Ácido alfa-Linolênico
13.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046209

RESUMO

Transgenic technology has huge application potential in agriculture and medical fields, such as producing new livestock varieties with new valuable features and xenotransplantation. However, how an exogenous gene affects the host animal's gene regulation networks and their health status is still poorly understood. In the current study, Fat-1 transgenic sheep were generated, and the tissues from 100-day abnormal (DAF_1) and normal (DAF_2) fetuses, postnatal lambs (DAF_4), transgenic-silencing (DAFG5), and -expressing (DAFG6) skin cells were collected and subjected to transcriptome sequencing, and their gene expression profiles were compared in multiple dimensions. The results were as follows. For DAF_1, its abnormal development was caused by pathogen invasion but not the introduction of the Fat-1 gene. Fat-1 expression down-regulated the genes related to the cell cycle; the NF-κB signaling pathway and the PI3K/Akt signaling pathway were down-regulated, and the PUFAs (polyunsaturated fatty acids) biosynthesis pathway was shifted toward the biosynthesis of high-level n-3 LC-PUFAs (long-chain PUFAs). Four key node genes, FADS2, PPARA, PRKACA, and ACACA, were found to be responsible for the gene expression profile shift from the Fat-1 transgenic 100-day fetus to postnatal lamb, and FADS2 may play a key role in the accumulation of n-3 LC-PUFAs in Fat-1 transgenic sheep muscle. Our study provides new insights into the FUFAs synthesis regulation in Fat-1 transgenic animals.


Assuntos
Animais Geneticamente Modificados/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/biossíntese , Ovinos/genética , Transcriptoma , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Células Cultivadas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ácidos Graxos Insaturados/genética , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
RNA ; 23(8): 1172-1179, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28473452

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that repress the translation of their target genes. It has previously been shown that a target's availability to miRNA can be affected by its structure. G-quadruplexes (G4) are noncanonical structures adopted by G-rich nucleic acids that have been shown to have multiple biological functions. In this study, whether or not G4 structures' presence in the 3' UTRs of mRNAs can hinder miRNA binding was investigated. Putative G4 overlapping with predicted miRNAs' binding sites was searched for, and 44,294 hits were found in humans. The FADS2 mRNA/mir331-3p pair was selected as a model example. In-line probing and G4-specific fluorescent ligand experiments binding were performed and confirmed the presence of a G4 near the predicted miRNA binding site. Subsequent luciferase assays showed that the presence of the G4 prevents the binding of mir331-3p in cellulo. Together, these results served as proof of concept that a G4 structure present in a 3' UTR sequence should be taken into consideration when predicting miRNA binding sites.


Assuntos
Regiões 3' não Traduzidas/genética , Ácidos Graxos Dessaturases/metabolismo , Quadruplex G , MicroRNAs/metabolismo , Sítios de Ligação , Ácidos Graxos Dessaturases/genética , Células HEK293 , Humanos , MicroRNAs/genética , Conformação de Ácido Nucleico
15.
Br J Nutr ; 122(1): 25-38, 2019 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-31266551

RESUMO

The present study investigated the effects of nutritional programming through parental feeding on offspring performance and expression of selected genes related to stress resistance in a marine teleost. Gilthead seabream broodstock were fed diets containing various fish oil (FO)/vegetable oil ratios to determine their effects on offspring performance along embryogenesis, larval development and juvenile on-growing periods. Increased substitution of dietary FO by linseed oil (LO) up to 80 % LO significantly reduced the total number of eggs produced by kg per female per spawn. Moreover, at 30 d after hatching, parental feeding with increasing LO up to 80 % led to up-regulation of the fatty acyl desaturase 2 gene (fads2) that was correlated with the increase in conversion rates of related PUFA. Besides, cyclo-oxygenase 2 (cox2) and TNF-α (tnf-α) gene expression was also up-regulated by the increase in LO in broodstock diets up to 60 or 80 %, respectively. When 4-month-old offspring were challenged with diets having different levels of FO, the lowest growth was found in juveniles from broodstock fed 100 % FO. An increase in LO levels in the broodstock diet up to 60LO raised LC-PUFA levels in the juveniles, regardless of the juvenile's diet. The results showed that it is possible to nutritionally programme gilthead seabream offspring through the modification of the fatty acid profiles of parental diets to improve the growth performance of juveniles fed low FO diets, inducing long-term changes in PUFA metabolism with up-regulation of fads2 expression. The present study provided the first pieces of evidence of the up-regulation of immune system-related genes in the offspring of parents fed increased FO replacement by LO.


Assuntos
Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/farmacologia , Dourada/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna
16.
Br J Nutr ; 122(s1): S68-S79, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31638497

RESUMO

Variants in the human genes of fatty acid (FA) desaturase 1 (FADS1), 2 (FADS2) and 3 (FADS3) are associated with PUFA blood levels. We explored if maternal prenatal supplementation and children's genetic variation in seventeen SNP of the FADS1, FADS2 and FADS3 gene cluster influence twenty-one of the most relevant cheek cells' derived FA in glycerophospholipids (GPL-FA). The study was conducted in 147 Spanish and German mother-children pairs participating in the Nutraceuticals for a Healthier Life (NUHEAL) study at 8, 9 and 9·5 years. Linear and mixed model longitudinal regression analyses were performed. Maternal fish-oil (FO) or FO+5-methyltetrahydrofolate (5-MTHF) supplementation during pregnancy was associated with a significant decrease of arachidonic acid (AA) concentrations in cheek cell GPL in the offspring, from 8 to 9·5 years; furthermore, maternal FO+5-MTHF supplementation was associated with higher n-6 docosapentaenoic acid concentrations in their children at age 8 years. FADS1 rs174556 polymorphism and different FADS2 genotypes were associated with higher concentrations of linoleic and α-linolenic acids in children; moreover, some FADS2 genotypes determined lower AA concentrations in children's cheek cells. It is suggested an interaction between type of prenatal supplementation and the offspring genetic background driving GPL-FA levels at school age. Prenatal FO supplementation, and/or with 5-MTHF, seems to stimulate n-3 and n-6 FA desaturation in the offspring, increasing long-chain PUFA concentrations at school age, but depending on children's FADS1 and FADS2 genotypes. These findings suggest potential early nutrition programming of FA metabolic pathways, but interacting with children's FADS polymorphisms.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos/análise , Glicerofosfolipídeos/química , Mucosa Bucal/química , Ácido Araquidônico/análise , Bochecha , Criança , Dessaturase de Ácido Graxo Delta-5 , Suplementos Nutricionais , Feminino , Óleos de Peixe/administração & dosagem , Genótipo , Alemanha , Humanos , Masculino , Mucosa Bucal/citologia , Família Multigênica/genética , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Cuidado Pré-Natal/métodos , Espanha , Tetra-Hidrofolatos/administração & dosagem
17.
Br J Nutr ; 121(11): 1223-1234, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30854986

RESUMO

Studies have shown that the reduction in serum TAG concentrations with long-chain n-3 fatty acid supplementation is highly variable among individuals. The objectives of the present study were to compare the proportions of individuals whose TAG concentrations lowered after high-dose DHA and EPA, and to identify the predictors of response to both modalities. In a double-blind, controlled, crossover study, 154 men and women were randomised to three supplemented phases of 10 weeks each: (1) 2·7 g/d of DHA, (2) 2·7 g/d of EPA and (3) 3 g/d of maize oil, separated by 9-week washouts. As secondary analyses, the mean intra-individual variation in TAG was calculated using the standard deviation from the mean of four off-treatment samples. The response remained within the intra-individual variation (±0·25 mmol/l) in 47 and 57 % of participants after DHA and EPA, respectively. Although there was a greater proportion of participants with a reduction >0·25 mmol/l after DHA than after EPA (45 υ. 32 %; P 0·25 mmol/l after both DHA and EPA had higher non-HDL-cholesterol, TAG and insulin concentrations compared with other responders at baseline (all P < 0·05). In conclusion, supplementation with 2·7 g/d DHA or EPA had no meaningful effect on TAG concentrations in a large proportion of individuals with normal mean TAG concentrations at baseline. Although DHA lowered TAG in a greater proportion of individuals compared with EPA, the magnitude of TAG lowering among them was similar.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Hipolipemiantes/administração & dosagem , Triglicerídeos/sangue , Idoso , Doenças Cardiovasculares/etiologia , Colesterol/sangue , Óleo de Milho , Estudos Cross-Over , Dessaturase de Ácido Graxo Delta-5 , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
18.
Eur J Nutr ; 58(2): 831-842, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29779171

RESUMO

PURPOSE: Delta-5-desaturase (fatty acid desaturase-1, FADS1) and delta-6 desaturase (fatty acid desaturase-2, FADS2), rate-limiting enzymes in the biosynthesis of long-chain polyunsaturated fatty acids, may be associated with the risk of metabolic syndrome (MetS). We investigated how FADS1 rs174547 and FADS2 rs2845573 variants modify the prevalence of MetS and whether the risk is modulated by interactions with dietary fat. METHODS: Genetic, anthropometric, biochemical, and dietary data were collected from the Ansan/Ansung (8842 adults) and City-Rural (5512 adults) cohorts in Korea. The association between FADS1 rs174547(C/T) and FADS2 rs2845573(C/T) variants and MetS was analyzed, as was the interaction of genotypes and fatty acid intake and the risk of MetS after adjusting for MetS-related confounders. RESULTS: Carriers of FADS1 rs174547 and FADS2 rs2845573 minor alleles had lower serum HDL-cholesterol and glucose levels and higher triglyceride levels than those with major alleles. Ansan/Ansung cohort individuals with FADS1 minor alleles or haplotypes of FADS1 and FADS2 minor alleles had increased risk of MetS, including lower serum HDL-cholesterol and triglyceride levels and blood pressure after adjusting for MetS-related confounders. The City-Rural cohort showed similar results. Total fat intake showed interactions with FADS1 and haplotype variants on MetS risk: MetS frequency was reduced in people consuming moderate fat diets as compared to low fat diets in FADS1 and haplotype of FADS1 and FADS2 major alleles. CONCLUSION: Korean carriers of the FADS1 rs174547 and FADS2 rs2845573 minor alleles have a greater susceptibility to MetS and moderate fat intake protected against the risk of MetS in carriers of the FADS1 major alleles.


Assuntos
Alelos , Dieta com Restrição de Gorduras/métodos , Ácidos Graxos Dessaturases/genética , Haplótipos/genética , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/genética , Adulto , Idoso , Glicemia/metabolismo , Colesterol/sangue , Estudos de Coortes , Dessaturase de Ácido Graxo Delta-5 , Dieta com Restrição de Gorduras/estatística & dados numéricos , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , República da Coreia , Triglicerídeos/sangue
19.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614732

RESUMO

The rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability for the biosynthesis of long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all the catalytic enzymes including two fatty acyl desaturase 2 (Δ4 Fads2 and Δ6/Δ5 Fads2) and two elongases (Elovl4 and Elovl5) have been identified, providing a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in fish. Stimulatory protein 1 (Sp1) has been speculated to be a vital transcription factor in determining the promoter activity of Fads-like genes in fish, however its regulatory effects on gene expression and LC-PUFA biosynthesis have not been demonstrated. Bioinformatic analysis predicted potential Sp1 binding sites in the promoters of the rabbitfish Δ6/Δ5 fads2 and elovl5, but not in Δ4 fads2 promoter. Here we cloned full-length cDNA of the rabbitfish sp1 gene, which encoded a putative protein of 701 amino acids, and was expressed in all tissues studied with highest levels in gill and eyes. The dual luciferase reporter assay in HepG2 line cells demonstrated the importance of the Sp1 binding site for the promoter activities of both Δ6/Δ5 fads2 and elovl5. Moreover, the electrophoretic mobility shift assay confirmed the direct interaction of Sp1 with the two promoters. Insertion of the Sp1 binding site of Δ6/Δ5 fads2 promoter into the corresponding region of the Δ4 fads2 promoter significantly increased activity of the latter. In the Siganus canaliculatus hepatocyte line (SCHL) cells, mRNA levels of Δ6/Δ5 fads2 and elovl5 were positively correlated with the expression of sp1 when sp1 was overexpressed or knocked-down by RNAi or antagonist (mithramycin) treatment. Moreover, overexpression of sp1 also led to a higher conversion of 18:2n-6 to 18:3n-6, 18:2n-6 to 20:2n-6, and 18:3n-3 to 20:3n-3, which related to the functions of Δ6/Δ5 Fads2 and Elovl5, respectively. These results indicated that Sp1 is involved in the transcriptional regulation of LC-PUFA biosynthesis by directly targeting Δ6/Δ5 fads2 and elovl5 in rabbitfish, which is the first report of Sp1 involvement in the regulation of LC-PUFA biosynthesis in vertebrates.


Assuntos
Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos Ômega-3/biossíntese , Proteínas de Peixes/genética , Fator de Transcrição Sp1/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fator de Transcrição Sp1/genética , Regulação para Cima
20.
Adv Exp Med Biol ; 1012: 3-9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956189

RESUMO

The predisposing factors to lifestyle-associated diseases are established in the early period of life with underlying gene-environment interaction. Epigenetics is a chemical modification-based genetic mechanism that is affected by various nutritional factors. One-carbon metabolism is a metabolic system associated with methyl residue that is supplied from folic acid. Therefore, from the epigenetic point of view, proper intake of folic acid is important for pregnant women not only to prevent congenital abnormalities such as neural tube defect but also to prevent various adult disorders of the offspring. Dyslipidemia is an important risk factor of coronary heart disease, and epidemiological studies on Dutch winter famine, Jewish holocaust survivors, and Chinese famine suggested that prenatal malnutrition was associated with the dyslipidemia. Recent animal studies revealed that malnutrition in utero causes an epigenetic change in the Pparα gene, which accelerates the activity of delta-6 desaturase and delta-5 desaturase, that potentially induces dyslipidemia in adulthood. It has been known that overnutrition also increased the risk of cardiovascular diseases. Recent animal studies revealed that high-fat diet increased DNA methylation in the promoter region of delta-6 desaturase gene (Fads 2) that downregulates the gene expression in the arterial smooth muscle, which potentially contributes to cardiovascular diseases. Taken together, either insufficient or excessive nutrition alters epigenetic modification of genes that encodes enzymes associated with lipid metabolism. This altered epigenetic state persists during one's lifetime, which is potentially involved in noncommunicable diseases in adulthood.


Assuntos
Carbono/metabolismo , Suscetibilidade a Doenças/etiologia , Metabolismo dos Lipídeos/fisiologia , Redes e Vias Metabólicas , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Metilação de DNA/fisiologia , Suscetibilidade a Doenças/metabolismo , Epigênese Genética/fisiologia , Feminino , Humanos , Redes e Vias Metabólicas/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA