RESUMO
ELYS is a nucleoporin that localizes to the nuclear side of the nuclear pore complex (NPC) in interphase cells. In mitosis, it serves as an assembly platform that interacts with chromatin and then with nucleoporin subcomplexes to initiate post-mitotic NPC assembly. Here we identify ELYS as a major binding partner of the membrane protein VAPB during mitosis. In mitosis, ELYS becomes phosphorylated at many sites, including a predicted FFAT (two phenylalanines in an acidic tract) motif, which mediates interaction with the MSP (major sperm protein)-domain of VAPB. Binding assays using recombinant proteins or cell lysates and co-immunoprecipitation experiments show that VAPB binds the FFAT motif of ELYS in a phosphorylation-dependent manner. In anaphase, the two proteins co-localize to the non-core region of the newly forming nuclear envelope. Depletion of VAPB results in prolonged mitosis, slow progression from meta- to anaphase and in chromosome segregation defects. Together, our results suggest a role of VAPB in mitosis upon recruitment to or release from ELYS at the non-core region of the chromatin in a phosphorylation-dependent manner.
Assuntos
Proteínas de Ligação a DNA , Mitose , Ligação Proteica , Fatores de Transcrição , Proteínas de Transporte Vesicular , Humanos , Anáfase , Cromatina/metabolismo , Segregação de Cromossomos , Células HeLa , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMO
Effective intracellular communication between cellular organelles occurs at dedicated membrane contact sites (MCSs). Tether proteins are responsible for the establishment of MCSs, enabling direct communication between organelles to ensure organelle function and host cell homeostasis. While recent research has identified tether proteins in several bacterial pathogens, their functions have predominantly been associated with mediating inter-organelle communication between the bacteria containing vacuole (BCV) and the host endoplasmic reticulum (ER). Here, we identify a novel bacterial effector protein, CbEPF1, which acts as a molecular tether beyond the confines of the BCV and facilitates interactions between host cell organelles. Coxiella burnetii, an obligate intracellular bacterial pathogen, encodes the FFAT motif-containing protein CbEPF1 which localizes to host lipid droplets (LDs). CbEPF1 establishes inter-organelle contact sites between host LDs and the ER through its interactions with VAP family proteins. Intriguingly, CbEPF1 modulates growth of host LDs in a FFAT motif-dependent manner. These findings highlight the potential for bacterial effector proteins to impact host cellular homeostasis by manipulating inter-organelle communication beyond conventional BCVs.
RESUMO
In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently hypothetical concepts, including the idea of tether oligomerization and redox regulation playing a role in MCS formation. We identify gaps in our current understanding, such as the identity of the majority of kinases/phosphatases involved in tether modification and conclude that a holistic approach-incorporating the formation of multiple MCS, regulated by interconnected regulatory modulators-may be required to fully appreciate the true complexity of these fascinating intracellular communication systems.
Assuntos
Retículo Endoplasmático , Membranas Mitocondriais , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismoRESUMO
Membrane contact sites are specialized areas where the membranes of two distinct organelles are physically connected and allow for the exchange of molecules and for signaling processes. Understanding the mechanisms whereby proteins localize to and function in these structures is of special interest; however, methods allowing for reconstitution of these contact sites are few and only based on synthetic membranes and recombinant proteins. Here, we devised a strategy to create in situ artificial contact sites between synthetic and endogenous organelle membranes. Liposomes functionalized with a peptide containing a two phenylalanines in an acidic tract (FFAT) motif were added to adherent cells whose plasma membrane was perforated. Confocal and super-resolution microscopy revealed that these liposomes associated with the endoplasmic reticulum via the specific interaction of the FFAT motif with endoplasmic reticulum-resident vesicle-associated membrane protein-associated proteins. This approach allowed for quantification of the attachment properties of peptides corresponding to FFAT motifs derived from distinct proteins and of a protein construct derived from steroidogenic acute regulatory protein-related lipid transfer domain-3. Collectively, these data indicate that the creation of in situ artificial contact sites represents an efficient approach for studying the membrane-tethering activity of proteins and for designing membrane contact site reconstitution assays in cellular contexts.
Assuntos
Retículo Endoplasmático , Lipossomos , Membranas Artificiais , Motivos de Aminoácidos , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
Membrane contact sites are cellular structures that mediate interorganelle exchange and communication. The two major tether proteins of the endoplasmic reticulum (ER), VAP-A and VAP-B, interact with proteins from other organelles that possess a small VAP-interacting motif, named FFAT [two phenylalanines (FF) in an acidic track (AT)]. In this study, using an unbiased proteomic approach, we identify a novel ER tether named motile sperm domain-containing protein 2 (MOSPD2). We show that MOSPD2 possesses a Major Sperm Protein (MSP) domain which binds FFAT motifs and consequently allows membrane tethering in vitro MOSPD2 is an ER-anchored protein, and it interacts with several FFAT-containing tether proteins from endosomes, mitochondria, or Golgi. Consequently, MOSPD2 and these organelle-bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi. Thus, we characterized here MOSPD2, a novel tethering component related to VAP proteins, bridging the ER with a variety of distinct organelles.
Assuntos
Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Receptores de Quimiocinas/genética , Proteínas de Transporte Vesicular/genética , Motivos de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Retículo Endoplasmático/metabolismo , Endossomos/genética , Complexo de Golgi/genética , Humanos , Masculino , Camundongos , Membranas Mitocondriais/metabolismo , Ligação Proteica , Proteômica , Espermatozoides/metabolismoRESUMO
Membrane contact sites (MCS) are zones of contact between the membranes of two organelles. At MCS, specific proteins tether the organelles in close proximity and mediate the nonvesicular trafficking of lipids and ions between the two organelles. The endoplasmic reticulum (ER) integral membrane protein VAP is a common component of MCS involved in both tethering and lipid transfer by binding directly to proteins containing a FFAT [two phenylalanines (FF) in an acidic tract (AT)] motif. In addition to maintaining cell homeostasis, MCS formation recently emerged as a mechanism by which intracellular pathogens hijack cellular resources and establish their replication niche. Here, we investigated the mechanism by which the Chlamydia-containing vacuole, termed the inclusion, establishes direct contact with the ER. We show that the Chlamydia protein IncV, which is inserted into the inclusion membrane, displays one canonical and one noncanonical FFAT motif that cooperatively mediated the interaction of IncV with VAP. IncV overexpression was sufficient to bring the ER in close proximity of IncV-containing membranes. Although IncV deletion partially decreased VAP association with the inclusion, it did not suppress the formation of ER-inclusion MCS, suggesting the existence of redundant mechanisms in MCS formation. We propose a model in which IncV acts as one of the primary tethers that contribute to the formation of ER-inclusion MCS. Our results highlight a previously unidentified mechanism of bacterial pathogenesis and support the notion that cooperation of two FFAT motifs may be a common feature of VAP-mediated MCS formation. Chlamydia-host cell interaction therefore constitutes a unique system to decipher the molecular mechanisms underlying MCS formation.
Assuntos
Motivos de Aminoácidos/fisiologia , Proteínas de Bactérias/metabolismo , Chlamydia/metabolismo , Retículo Endoplasmático/metabolismo , Vacúolos/metabolismo , Sítios de Ligação/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/microbiologia , Células HEK293 , Células HeLa , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/microbiologia , Proteínas de Membrana/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Vacúolos/microbiologia , Proteínas de Transporte Vesicular/metabolismoRESUMO
ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers. We investigated here a novel function of ORP3 dependent on its targeting to both the endoplasmic reticulum (ER) and the plasma membrane (PM). Using biochemical and cell imaging techniques we demonstrate the mechanistic requirements for the subcellular targeting and function of ORP3 in control of R-Ras activity. We show that hyperphosphorylated ORP3 (ORP3-P) selectively interacts with the ER membrane protein VAPA, and ORP3-VAPA complexes are targeted to PM sites via the ORP3 pleckstrin homology (PH) domain. A novel FFAT (two phenylalanines in an acidic tract)-like motif was identified in ORP3; only disruption of both the FFAT-like and canonical FFAT motif abolished the phorbol-12-myristate-13-acetate (PMA) stimulated interaction of ORP3-P with VAPA. Co-expression of ORP3 and VAPA induced R-Ras activation, dependent on the interactions of ORP3 with VAPA and the PM. Consistently, downstream AktS473 phosphorylation and ß1-integrin activity were enhanced by ORP3-VAPA. To conclude, phosphorylation of ORP3 controls its association with VAPA. Furthermore, we present evidence that ORP3-VAPA complexes stimulate R-Ras signaling.
Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas ras/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/biossíntese , Linhagem Celular Tumoral , Ativação Enzimática , Proteínas de Ligação a Ácido Graxo , Células HEK293 , Humanos , Integrina beta1/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Proteínas de Transporte Vesicular/biossínteseRESUMO
Effective intracellular communication between cellular organelles is pivotal for maintaining cellular homeostasis. Tether proteins, which are responsible for establishing membrane contact sites between cell organelles, enable direct communication between organelles and ultimately influence organelle function and host cell homeostasis. While recent research has identified tether proteins in several bacterial pathogens, their functions have predominantly been associated with mediating inter-organelle communication specifically between the bacteria containing vacuole (BCV) and the host endoplasmic reticulum (ER). However, this study reveals a novel bacterial effector protein, CbEPF1, which acts as a molecular tether beyond the confines of the BCV and facilitates interactions between host cell organelles. Coxiella burnetii, an obligate intracellular bacterial pathogen, encodes the FFAT motif-containing protein CbEPF1 which localizes to host lipid droplets (LDs). CbEPF1 establishes inter-organelle contact sites between host LDs and the ER through its interactions with VAP family proteins. Intriguingly, CbEPF1 modulates growth of host LDs in a FFAT motif-dependent manner. These findings highlight the potential for bacterial effector proteins to impact host cellular homeostasis by manipulating inter-organelle communication beyond conventional BCVs.
RESUMO
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
RESUMO
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
RESUMO
The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Neurônios/patologia , Fenótipo , Fatores de Risco , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismoRESUMO
The endoplasmic reticulum transmembrane protein vesicle-associated membrane protein-associated protein (VAP) plays a central role in the formation and function of membrane contact sites (MCS) through its interactions with proteins. The major sperm protein (MSP) domain of VAP binds to a variety of sequences which are referred to as FFAT-like motifs. In this study, we investigated the interactions of eight peptides containing FFAT-like motifs with the VAP-A MSP domain (VAP-AMSP ) by solution NMR. Six of eight peptides are specifically bound to VAP-A. Furthermore, we found that the RNA-dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2 has an FFAT-like motif which specifically binds to VAP-AMSP as well as other FFAT-like motifs. Our results will contribute to the discovery of new VAP interactors.
Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus/química , Peptídeos/química , SARS-CoV-2/enzimologia , Proteínas de Transporte Vesicular/química , Motivos de Aminoácidos , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMO
The endoplasmic reticulum (ER) is the largest membrane-bound organelle in eukaryotic cells and plays critical roles in diverse processes in metabolism, signaling and intracellular organization. In response to stress stimuli such as nutrient deprivation, accumulation of misfolded proteins or exposure to chemicals, the ER increases in size through upregulated synthesis of its components to counteract the stress. To restore physiological size, the excess ER components are continuously dismantled and degraded by reticulophagy, a form of autophagy that targets, via adaptor molecules called reticulophagy receptors, specific ER portions to the lysosome for degradation. Previous studies have identified several ER resident proteins as reticulophagy receptors. In a recent study, we identified CALCOCO1 as a soluble reticulophagy receptor for the degradation of tubular ER in response to proteotoxic and starvation-induced stress. On the ER membrane, CALCOCO1 interacts with VAPA and VAPB via a FFAT-like motif and recruits autophagy machinery by binding directly to Atg8-family proteins via LIR and UDS interacting region (UIR) motifs acting co-dependently. Depletion of CALCOCO1 in cultured cells led to an impaired ER degradation during stress.
Assuntos
Autofagia , Proteínas de Ligação ao Cálcio/metabolismo , Receptores de Superfície Celular/metabolismo , Motivos de Aminoácidos , Retículo Endoplasmático/metabolismo , Humanos , Modelos Biológicos , SolubilidadeRESUMO
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Assuntos
Membrana Celular/genética , Complexo de Golgi/genética , Mitocôndrias/genética , Peroxissomos/genética , Endossomos/genética , Humanos , Gotículas Lipídicas/metabolismo , Lisossomos/genéticaRESUMO
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fungos/metabolismo , Neoplasias/metabolismo , Animais , Proteínas de Transporte/química , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/genética , Metabolismo dos Lipídeos , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios ProteicosRESUMO
The inter-organelle transport of lipids must be regulated to ensure appropriate lipid composition of each organelle. In mammalian cells, ceramide synthesised in the endoplasmic reticulum (ER) is transported to the trans-Golgi regions, where ceramide is converted to sphingomyelin (SM) with the concomitant production of diacylglycerol. Ceramide transport protein (CERT) transports ceramide from the ER to the trans-Golgi regions at the ER-Golgi membrane contact sites (MCS). The function of CERT is down-regulated by multisite phosphorylation of a serine-repeat motif (SRM) and up-regulated by phosphorylation of serine 315 in CERT. Multisite phosphorylation of the SRM is primed by protein kinase D, which is activated by diacylglycerol. The function of CERT is regulated by a phosphorylation-dependent feedback mechanism in response to cellular requirements of SM. CERT-dependent ceramide transport is also affected by the pool of phosphatidylinositol (PtdIns)-4-phosphate (PtdIns(4)P) in the trans-Golgi regions, while the PtdIns(4)P pool is regulated by PtdIns-4-kinases and oxysterol-binding protein. The ER-Golgi MCS may serve as inter-organelle communication zones, in which many factors work in concert to serve as an extensive rheostat of SM, diacylglycerol, cholesterol and PtdIns(4)P.