Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 70(5): 949-960.e4, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861159

RESUMO

The mammalian Target of Rapamycin Complex 1 (mTORC1)-signaling system plays a critical role in the maintenance of cellular homeostasis by sensing and integrating multiple extracellular and intracellular cues. Therefore, uncovering the effectors of mTORC1 signaling is pivotal to understanding its pathophysiological effects. Here we report that the transcription factor forkhead/winged helix family k1 (Foxk1) is a mediator of mTORC1-regulated gene expression. Surprisingly, Foxk1 phosphorylation is increased upon mTORC1 suppression, which elicits a 14-3-3 interaction, a reduction of DNA binding, and nuclear exclusion. Mechanistically, this occurs by mTORC1-dependent suppression of nuclear signaling by the Foxk1 kinase, Gsk3. This pathway then regulates the expression of multiple genes associated with glycolysis and downstream anabolic pathways directly modulated by Foxk1 and/or by Foxk1-regulated expression of Hif-1α. Thus, Foxk1 mediates mTORC1-driven metabolic rewiring, and it is likely to be critical for metabolic diseases where improper mTORC1 signaling plays an important role.


Assuntos
Reprogramação Celular , Metabolismo Energético , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Proliferação de Células , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fosforilação , Ligação Proteica , Transdução de Sinais
2.
J Transl Med ; 22(1): 192, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383406

RESUMO

BACKGROUND: Zinc finger SWIM-type containing 4 (ZSWIM4) induces drug resistance in breast cancer cells. However, its role in epithelial ovarian cancer (EOC) remains unknown. In this study, we aimed to investigate the clinical significance of ZSWIM4 expression in EOC and develop new clinical therapeutic strategies for EOC. METHODS: ZSWIM4 expression in control and EOC tumor tissues was examined using immunohistochemistry. Lentiviral transduction, Cell Counting Kit-8 assay, tumorsphere formation assay, flow cytometry, western blotting, and animal xenograft model were used to assess the role of ZSWIM4 in chemotherapy. Cleavage Under Targets and Tagmentation (CUT&Tag) assays, chromatin immunoprecipitation assays, and luciferase reporter assays were used to confirm FOXK1-mediated upregulation of ZSWIM4 expression. The mechanism by which ZSWIM4 inhibition improves chemosensitivity was evaluated using RNA-sequencing. A ZSWIM4-targeting inhibitor was explored by virtual screening and surface plasmon resonance analysis. Patient-derived organoid (PDO) models were constructed from EOC tumor tissues with ZSWIM4 expression. RESULTS: ZSWIM4 was overexpressed in EOC tumor tissues and impaired patient prognoses. Its expression correlated positively with EOC recurrence. ZSWIM4 expression was upregulated following carboplatin treatment, which, in turn, contributed to chemoresistance. Silencing ZSWIM4 expression sensitized EOC cells to carboplatin treatment in vitro and in vivo. FOXK1 could bind to the GTAAACA sequence of the ZSWIM4 promoter region to upregulate ZSWIM4 transcriptional activity and FOXK1 expression increased following carboplatin treatment, leading to an increase in ZSWIM4 expression. Mechanistically, ZSWIM4 knockdown downregulated the expression of several rate-limiting enzymes involved in glycine synthesis, causing a decrease in intracellular glycine levels, thus enhancing intracellular reactive oxygen species production induced by carboplatin treatment. Compound IPN60090 directly bound to ZSWIM4 protein and exerted a significant chemosensitizing effect in both EOC cells and PDO models. CONCLUSIONS: ZSWIM4 inhibition enhanced EOC cell chemosensitivity by ameliorating intracellular glycine metabolism reprogramming, thus providing a new potential therapeutic strategy for EOC.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Animais , Humanos , Feminino , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Prognóstico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Forkhead/metabolismo
3.
FASEB J ; 37(12): e23266, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37889840

RESUMO

Adipogenesis is a tightly regulated process, and its dysfunction has been linked to metabolic disorders such as obesity. Forkhead box k1 (Foxk1) is known to play a role in the differentiation of myogenic precursor cells and tumorigenesis of different types of cancers; however, it is not clear whether and how it influences adipocyte differentiation. Here, we found that Foxk1 was induced in mouse primary bone marrow stromal cells (BMSCs) and established mesenchymal progenitor/stromal cell lines C3H/10T1/2 and ST2 after adipogenic treatment. In addition, obese db/db mice have higher Foxk1 expression in inguinal white adipose tissue than nonobese db/m mice. Foxk1 overexpression promoted adipogenic differentiation of C3H/10T1/2, ST2 cells and BMSCs, along with the enhanced expression of CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor γ (Pparγ), and fatty acid binding protein 4. Moreover, Foxk1 overexpression enhanced the expression levels of lipogenic factors during adipogenic differentiation in both C3H/10T1/2 cells and BMSCs. Conversely, Foxk1 silencing impaired these cells from fully differentiating. Furthermore, adipogenic stimulation induced the nuclear translocation of Foxk1, which depended on the mTOR and PI3-kinase signaling pathways. Subsequently, Foxk1 is directly bound to the Pparγ2 promoter, stimulating its transcriptional activity and promoting adipocyte differentiation. Collectively, our study provides the first evidence that Foxk1 promotes adipocyte differentiation from progenitor cells by promoting nuclear translocation and upregulating the transcriptional activity of the Pparγ2 promoter during adipogenic differentiation.


Assuntos
Adipogenia , PPAR gama , Camundongos , Animais , Adipogenia/fisiologia , PPAR gama/genética , PPAR gama/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Adipócitos/metabolismo , Camundongos Endogâmicos C3H , Diferenciação Celular , Obesidade/metabolismo , Células 3T3-L1
4.
BMC Gastroenterol ; 24(1): 57, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302914

RESUMO

BACKGROUND: Liver fibrosis is a major risk factor for hepatocellular carcinoma (HCC). We have previously reported that differentially methylated regions (DMRs) are correlated with the fibrosis stages of metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the methylation levels of those DMRs in liver fibrosis and subsequent HCC were examined. METHODS: The methylation levels of DMRs were investigated using alcoholic cirrhosis and HCC (GSE60753). The data of hepatitis C virus-infected cirrhosis and HCC (GSE60753), and two datasets (GSE56588 and GSE89852) were used for replication analyses. The transcriptional analyses were performed using GSE114564, GSE94660, and GSE142530. RESULTS: Hypomethylated DMR and increased transcriptional level of zinc finger and BTB domain containing 38 (ZBTB38) were observed in HCC. Hypermethylated DMRs, and increased transcriptional levels of forkhead box K1 (FOXK1) and zinc finger CCCH-type containing 3 (ZC3H3) were observed in HCC. The methylation levels of DMR of kazrin, periplakin interacting protein (KAZN) and its expression levels were gradually decreased as cirrhosis progressed to HCC. CONCLUSIONS: Changes in the methylation and transcriptional levels of ZBTB38, ZC3H3, FOXK1, and KAZN are important for the development of fibrosis and HCC; and are therefore potential therapeutic targets and diagnostic tools for cirrhosis and HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Metilação de DNA , Cirrose Hepática/complicações , Hepatite C/complicações , Fatores de Transcrição Forkhead
5.
Endocr J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38987195

RESUMO

Insulin is an essential hormone for animal activity and survival, and it controls the metabolic functions of the entire body. Throughout the evolution of metazoan animals and the development of their brains, a sustainable energy supply has been essential to overcoming the competition for survival under various environmental stresses. Managing energy for metabolism, preservation, and consumption inevitably involves high oxidative stress, causing tissue damage in various organs. In both mice and humans, excessive dietary intake can lead to insulin resistance in various organs, ultimately displaying metabolic syndrome and type 2 diabetes. Insulin signals require thorough regulation to maintain metabolism across diverse environments. Recent studies demonstrated that two types of forkhead-box family transcription factors, FOXOs and FOXKs, are related to the switching of insulin signals during fasting and feeding states. Insulin signaling plays a role in supporting higher activity during periods of sufficient food supply and in promoting survival during times of insufficient food supply. The insulin receptor depends on the tyrosine phosphatase feedback of insulin signaling to maintain adipocyte insulin responsiveness. α4, a regulatory subunit of protein phosphatase 2A (PP2A), has been shown to play a crucial role in modulating insulin signaling pathways by regulating the phosphorylation status of key proteins involved in these pathways. This short review summarizes the current understanding of the molecular mechanism related to the regulation of insulin signals.

6.
Biochem Biophys Res Commun ; 643: 8-15, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36584589

RESUMO

Regulators of adult neurogenesis are crucial targets for neuronal repair. Freshwater planarians are ideal model systems for studying neuronal regeneration as they can regenerate their entire central nervous system (CNS) using pluripotent adult stem cells. Here, we identified Djfoxk1 in planarian Dugesia japonica to be required for planarian CNS regeneration. Knockdown of Djfoxk1 inhibits the regeneration of the cephalic ganglia, resulting in the failure of eye regeneration. By RNAi screening of Djfoxk1 downstream genes, we identified Djsnon as another regulator of planarian neuronal regeneration. Inhibition of Djsnon with RNA interference (RNAi) results in similar phenotypes caused by Djfoxk1 RNAi without affecting cell proliferation and wound healing. Our findings show that Djsnon as a downstream gene of Djfoxk1 regulates the regeneration of the planarian CNS.


Assuntos
Planárias , Células-Tronco Pluripotentes , Animais , Planárias/genética , Sistema Nervoso Central/fisiologia , Neurônios , Interferência de RNA
7.
Int J Exp Pathol ; 104(3): 117-127, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806218

RESUMO

Aerobic glycolysis is a unique mark of cancer cells, which enables therapeutic intervention in cancer. Forkhead box K1 (FOXK1) is a transcription factor that facilitates the progression of multiple cancers including hepatocellular carcinoma (HCC). Nevertheless, it is unclear whether or not FOXK1 can affect HCC cell glycolysis. This study attempted to study the effect of FOXK1 on HCC cell glycolysis. Expression of mature miRNAs and mRNAs, as well as clinical data, was downloaded from The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) dataset. FOXK1 and miR-144-3p levels were assessed through quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Targeting of the relationship between miR-144-3p and FOXK1 was verified via a dual-luciferase assay. Pathway enrichment analysis of FOXK1 was performed by Gene Set Enrichment Analysis (GSEA). Cell function assays revealed the glycolytic ability, cell viability, migration, invasion, cell cycle, and apoptosis of HCC cells in each treatment group. Bioinformatics analysis suggested that FOXK1 was upregulated in tissues of HCC patients, while the upstream miR-144-3p was downregulated in tumour tissues. Dual-luciferase assay implied a targeting relationship between miR-144-3p and FOXK1. Cellular experiments implied that silencing FOXK1 repressed HCC cell glycolysis, which in turn inhibited the HCC malignant progression. Rescue assay confirmed that miR-144-3p repressed glycolysis in HCC cells by targeting FOXK1, and then repressed HCC malignant progression. miR-144-3p/FOXK1 axis repressed malignant progression of HCC via affecting the aerobic glycolytic process of HCC cells. miR-144-3p and FOXK1 have the potential to become new therapeutic targets for HCC, which provide new insights for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Glicólise/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
8.
J Pathol ; 257(1): 96-108, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049062

RESUMO

We report 21 cases of trichogerminoma harbouring previously undescribed FOXK1::GRHL1/2 or GPS2::GRHL1/2/3 in-frame fusion transcripts. Microscopic examination of a preliminary set of five cases revealed well-delimitated tumours located in the dermis with frequent extension to the subcutaneous tissue. Tumours presented a massive and nodular architecture and consisted of a proliferation of basaloid cells. A biphasic pattern sometime resulting in tumour cell nests ('cell balls') was present. Immunohistochemistry demonstrated the expression of cytokeratins (CKs) 15, 17, and PHLDA1. In addition, numerous CK20-positive Merkel cells were detected. RNA sequencing (RNA-seq) revealed a FOXK1::GRHL1 chimeric transcript in three cases and a FOXK1::GRHL2 fusion in two cases. In a second series for validation (n = 88), FOXK1::GRHL1/2 fusion transcripts were detected by RT-qPCR or FISH in an additional 12 trichogerminomas and not in any other follicular tumour entities or basal cell carcinoma cases (n = 66). Additional RNA-seq analysis in trichogerminoma cases without detected FOXK1::GRHL1/2 rearrangements revealed GPS2::GRHL1 fusion transcripts in two cases, GPS2::GRHL2 in one case, and GPS2::GRHL3 fusion transcript in one case. Therefore, our study strongly suggests that GRHL1/2/3 gene rearrangements might represent the oncogenic driver in trichogerminoma, a subset of follicular tumours characterized by immature features and numerous Merkel cells. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Cutâneas , Fatores de Transcrição Forkhead/genética , Rearranjo Gênico , Humanos , Imuno-Histoquímica , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Reino Unido
9.
J Biochem Mol Toxicol ; 37(9): e23391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37518988

RESUMO

Benign prostate hyperplasia (BPH) is the most commonly seen disease among aging males. Transforming growth factor(TGF)-ß-mediated epithelial-mesenchymal transition (EMT) and epithelial overproliferation might be central events in BPH etiology and pathophysiology. In the present study, long noncoding RNA MIR663AHG, miR-765, and FOXK1 formed a competing endogenous RNAs network, modulating TGF-ß-mediated EMT and epithelial overproliferation in BPH-1 cells. miR-765 expression was downregulated in TGF-ß-stimulated BPH-1 cells; miR-765 overexpression ameliorated TGF-ß-mediated EMT and epithelial overproliferation in BPH-1 cells. MIR663AHG directly targeted miR-765 and negatively regulated miR-765; MIR663AHG knockdown also attenuated TGF-ß-induced EMT and epithelial overproliferation in BPH-1 cells, whereas miR-765 inhibition attenuated MIR663AHG knockdown effects on TGF-ß-stimulated BPH-1 cells. miR-765 directly targeted FOXK1 and negatively regulated FOXK1. FOXK1 knockdown attenuated TGF-ß-induced EMT and epithelial overproliferation and promoted autophagy in BPH-1 cells, and partially attenuated miR-765 inhibition effects on TGF-ß-stimulated BPH-1 cells. In conclusion, this study provides a MIR663AHG/miR-765/FOXK1 axis modulating TGF-ß-induced epithelial proliferation and EMT, which might exert an underlying effect on BPH development and act as therapeutic targets for BPH treatment regimens.


Assuntos
MicroRNAs , Hiperplasia Prostática , Masculino , Humanos , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Próstata/metabolismo , Próstata/patologia , Transição Epitelial-Mesenquimal/genética , Hiperplasia/metabolismo , Movimento Celular , Fator de Crescimento Transformador beta1/metabolismo , MicroRNAs/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead
10.
BMC Cancer ; 22(1): 124, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35100978

RESUMO

BACKGROUND: Ovarian cancer (OC) is a female malignant tumor with a high fatality rate. Long non-coding RNAs (lncRNAs) are deeply involved in OC progression. The aim of this study is to explore the specific mechanism of lncRNA prostate androgen-regulated transcript 1 (PART1) in OC. METHODS: Quantitative real time PCR was utilized to determine the expression levels of PART1, microRNA (miR)-503-5p and forkhead-box k1 (FOXK1) in OC tissues and/or cells. The cell viability, migration, and invasion in OC were evaluated by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide assay, wound healing assay and transwell invasion assay, respectively. Flow cytometry was used to analyze the cell apoptosis. The xenograft tumor was conducted in nude mice to verify the effect of PART1 knockdown on OC in vivo. The target relationships among PART1, miR-503-5p and FOXK1 were predicted by StarBase, and verified by luciferase reporter assay. The level of FOXK1 was assessed by western blot. RESULTS: Increased expression of PART1 and FOXK1 was observed in OC tissues or cells, whereas miR-503-5p was downregulated. PART1 silencing or miR-503-5p overexpression repressed the cell viability, migration and invasion, and protomed apoptosis. Meanwhile, miR-503-5p was a target of PART1, and FOXK1 was a direct target gene of miR-503-5p. Both downregulation of miR-503-5p and upregulation of FOXK1 partly relieved the suppressive effects of PART1 knockdown on the oncogenicity of OC in vitro. CONCLUSION: Decreased PART1 represses the cell viability, migration and invasion of OC via regulating the miR-503-5p/FOXK1 axis, which provided an underlying target for treating OC.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/metabolismo , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Transdução de Sinais/genética
11.
Cell Commun Signal ; 20(1): 77, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642035

RESUMO

BACKGROUND: Natural antisense RNAs are RNA molecules that are transcribed from the opposite strand of either protein-coding or non-protein coding genes and have the ability to regulate the expression of their sense gene or several related genes. However, the roles of natural antisense RNAs in the maintenance and myogenesis of muscle stem cells remain largely unexamined. METHODS: We analysed myoblast differentiation and regeneration by overexpression and knockdown of Foxk1-AS using lentivirus and adeno-associated virus infection in C2C12 cells and damaged muscle tissues. Muscle injury was induced by BaCl2 and the regeneration and repair of damaged muscle tissues was assessed by haematoxylin-eosin staining and quantitative real-time PCR. The expression of myogenic differentiation-related genes was verified via quantitative real-time PCR, Western blotting and immunofluorescence staining. RESULTS: We identified a novel natural antisense RNA, Foxk1-AS, which is transcribed from the opposite strand of Foxk1 DNA and completely incorporated in the 3' UTR of Foxk1. Foxk1-AS targets Foxk1 and functions as a regulator of myogenesis. Overexpression of Foxk1-AS strongly inhibited the expression of Foxk1 in C2C12 cells and in tibialis anterior muscle tissue and promoted myoblast differentiation and the regeneration of muscle fibres damaged by BaCl2. Furthermore, overexpression of Foxk1-AS promoted the expression of Mef2c, which is an important transcription factor in the control of muscle gene expression and is negatively regulated by Foxk1. CONCLUSION: The results indicated that Foxk1-AS represses Foxk1, thereby rescuing Mef2c activity and promoting myogenic differentiation of C2C12 cells and regeneration of damaged muscle fibres. Video Abstract.


Assuntos
Fatores de Transcrição Forkhead , RNA Antissenso , Regiões 3' não Traduzidas , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Desenvolvimento Muscular/genética , RNA Antissenso/genética
12.
Drug Dev Res ; 83(4): 967-978, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35238054

RESUMO

Chemoresistance seriously hinders the treatment efficiency of human cancers, including prostate cancer (PCa). Multiple long noncoding RNAs (lncRNAs) were involved in drug resistance in PCa. We aimed to explore the function of transient receptor potential cation channel subfamily M member 2 (TRPM2) antisense RNA (TRPM2-AS) in paclitaxel (PTX) resistance in PCa. Our results showed that TRPM2-AS was increased in PTX-resistant PCa cells. TRPM2-AS knockdown accelerated cell apoptosis and inhibited cell proliferation, migration, invasion, and PTX resistance in PTX-resistant PCa cells. MiR-497-5p was bound to TRPM2-AS and its inhibition reversed the effects of TRPM2-AS knockdown on cell progression and PTX resistance in PTX-resistant PCa cells. FOXK1 was identified as a target of miR-497-5p and FOXK1 overexpression showed similar effects on cell progression and PTX resistance with miR-497-5p inhibition in PTX-resistant PCa cells. In conclusion, TRPM2-AS knockdown suppressed cell progression and PTX resistance in PTX-resistant PCa cells by miR-497-5p/FOXK1 axis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead , MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Masculino , MicroRNAs/genética , Paclitaxel/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Canais de Cátion TRPM/genética
13.
Cancer Cell Int ; 20(1): 553, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33298041

RESUMO

BACKGROUND: Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells. METHODS: Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot. RESULTS: XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells. CONCLUSIONS: XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for CRC.

14.
Cell Physiol Biochem ; 52(3): 553-564, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897321

RESUMO

BACKGROUND/AIMS: Aberrantly expressed miRNAs play a vital role in the development of some cancers, such as human osteosarcoma (OS). However, the detailed molecular mechanisms underlying miR-186-5p-involved osteosarcoma are unclear. METHODS: qRT-PCR and western blot analysis were employed to measure the expressions of miR-186-5p and forkhead box k1 (FOXK1). CCK-8 assay evaluated the effect of miR-186-5p and FOXK1 on cell proliferation. Transwell assay confirmed cell migration and invasion. Eventually, the dual-luciferase reporter assay validated 3'-untranslated region (3'-UTR) of FOXK1 as a direct target of miR-186-5p. RESULTS: Down-regulation of miR-186-5p was identified in OS tissues and cell lines, and negatively correlated with distant metastasis, Enneking stage and poor 5-year prognosis as well as the expression of forkhead box k1 (FOXK1) protein. Further assays demonstrated that miR-186-5p overexpression had inhibitory effects on in-vitro cell proliferation, cell cycle, and in-vivo tumor growth. miR-186-5p overexpression also inhibited the epithelial-tomesenchymal transition (EMT), migration and invasion of OS cells. Importantly, miR-186-5p directly targeted FOXK1 3'-UTR and negatively regulated its expression. Silencing of FOXK1 expression enhanced the inhibitory effects of miR-186-5p on OS cell proliferation, migration and invasion. CONCLUSION: These findings highlighted miR-186-5p as a tumor suppressor in the regulation of progression and metastatic potential of OS, and may benefit the development of therapies targeting miR-186-5p in patients with OS.


Assuntos
Neoplasias Ósseas/patologia , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/metabolismo , Osteossarcoma/patologia , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
Genes Cells ; 23(7): 599-605, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845697

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) kinase is a master regulator of the cellular response to nutrition-related signals such as insulin and amino acids. mTORC1 is activated on the lysosomal membrane and induces phosphorylation of a variety of downstream molecules. We previously showed that activated mTORC1 induces protein phosphatase 2A (PP2A)-mediated dephosphorylation of the transcription factor forkhead box K1 (FOXK1). The mechanism underlying the signal transduction from the cytoplasmic mTORC1 to the nuclear FOXK1 has remained unclear, however, we now show that a nuclear-cytoplasmic transport system is necessary for the mTORC1-FOXK1 signal transduction. This reaction is mediated by a shuttling protein B56, which is a regulatory subunit of PP2A and plays an essential role in the mTORC1-dependent dephosphorylation of FOXK1. These results suggest that PP2AB56 phosphatase contributes to the signaling for mTORC1-dependent transcriptional regulation.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Fosfatase 2/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
16.
Cell Physiol Biochem ; 51(6): 2547-2563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30562730

RESUMO

BACKGROUND/AIMS: The CCDC43 gene is conserved in human, rhesus monkey, mouse and zebrafish. Bioinformatics studies have demonstrated the abnormal expression of CCDC43 gene in colorectal cancer (CRC). However, the role and molecular mechanism of CCDC43 in CRC remain unknown. METHODS: The functional role of CCDC43 and FOXK1 in epithelial-mesenchymal transition (EMT) was determined using immunohistochemistry, flow cytometry, western blot, EdU incorporation, luciferase, chromatin Immunoprecipitation (ChIP) and cell invasion assays. RESULTS: The CCDC43 gene was overexpressed in human CRC. High expression of CCDC43 protein was associated with tumor progression and poor prognosis in patients with CRC. Moreover, the induction of EMT by CCDC43 occurred through TGF-ß signaling. Furthermore, a positive correlation between the expression patterns of CCDC43 and FOXK1 was observed in CRC cells. Promoter assays demonstrated that FOXK1 directly bound and activated the human CCDC43 gene promoter. In addition, CCDC43 was necessary for FOXK1- mediated EMT and metastasis in vitro and vivo. Taken together, this work identified that CCDC43 promoted EMT and was a direct transcriptional target of FOXK1 in CRC cells. CONCLUSION: FOXK1-CCDC43 axis might be helpful to develop the drugs for the treatment of CRC.


Assuntos
Neoplasias Colorretais/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/metabolismo , Humanos , Invasividade Neoplásica/diagnóstico , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Prognóstico , Regulação para Cima
17.
Cell Physiol Biochem ; 47(2): 590-603, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794466

RESUMO

BACKGROUND/AIMS: Metastasis is the primary cause of colorectal cancer (CRC)-related death. However, the molecular mechanisms underlying metastasis in CRC remain unclear. METHODS: We evaluated mRNA and protein expression levels by quantitative real-time reverse transcription PCR, western blotting, immunofluorescence, tissue microarrays, and immunohistochemistry assays. We also assessed the migration and invasion abilities of CRC cells in vitro by wound healing assays, invasion and migration assays, western blot analysis, and immunofluorescence. Tumor metastasis was evaluated in nude mice in vivo. RESULTS: A positive correlation was observed between the expression patterns of Forkhead box k1 (FOXK1) and Snail in CRC. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that Snail directly bound to and activated the human FOXK1 gene promoter. Moreover, the Snail-FOXK1 axis promote epithelial mesenchymal transition (EMT)-mediated CRC cell invasion and metastasis. FOXK1 and Snail expression levels were correlated with tumor progression and served as significant predictors of overall survival in patients with CRC. Furthermore, overexpression of FOXK1 induced the EMT by upregulating the expression of cysteine-rich angiogenic inducer 61 (Cyr61). Luciferase assays showed that Cyr61 was a direct transcriptional target of FOXK1. Down regulation of Cyr61 decreased FOXK1-enhanced "CRC cell" migration, invasion, and metastasis. Additionally, FOXK1 expression was positively correlated with Cyr61 expression and was associated with poor prognosis. CONCLUSIONS: The Snail/FOXK1/Cyr61 signaling axis regulates the EMT and metastasis of CRC.


Assuntos
Neoplasias Colorretais/patologia , Proteína Rica em Cisteína 61/metabolismo , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Proteína Rica em Cisteína 61/genética , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/antagonistas & inibidores , Fatores de Transcrição da Família Snail/genética , Transplante Heterólogo
18.
Biochem Biophys Res Commun ; 498(4): 1009-1015, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29550475

RESUMO

Lung cancer remains a leading cause of cancer-related deaths worldwide. In the past years, increasing reports indicate that circular RNAs (circRNAs) exert a great important role in human cancers, including lung cancer. However, the knowledge about circRNA in lung cancer remains very little so far. In the present study, we screened out a highly expressed novel circRNA named circMAN2B2 in lung cancer tissues. We investigated the function of circMAN2B2 and found that circMAN2B2 knockdown significantly inhibited cell proliferation and invasion in both H1299 and A549 lung cancer cells. Mechanistically, we found that circMAN2B2 could sponge miR-1275 to inhibit its level. Through a series of functional experiments, we dissected the role of miR-1275 in lung cancer and proved the anti-tumor role of miR-1275. Furthermore, we found that miR-1275 exerted its role in lung cancer by regulating FOXK1 expression. In addition, we demonstrated that restoration of FOXK1 could rescue circMAN2B2 knockdown-induced repression of cell proliferation and invasion. Taken together, our study demonstrated that circMAN2B2 acts as an oncogenic role in lung cancer through promoting FOXK1 expression by sponging miR-1275.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Fatores de Transcrição Forkhead/fisiologia , Neoplasias Pulmonares/patologia , MicroRNAs/fisiologia , RNA/fisiologia , Células A549 , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , RNA Circular
19.
Biochem Biophys Res Commun ; 494(1-2): 88-94, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29050933

RESUMO

Forkhead box k1 (FOXK1) is a member of the FOX class of transcription factors and it is dysregulated in many solid tumors including hepatocellular carcinoma, gastric cancer, colorectal cancer and prostate cancer. However, the expression status of FOXK1 and its clinical significance in esophageal cancer (EC) is still uncertain. Our study aimed at investigating the significance of FOXK1 expression in human EC and its biological function in the development of EC. We found that FOXK1 was overexpressed in EC tissues compared with corresponding non-tumor tissues using immunohistochemistry. And high FOXK1 expression was related to poor differentiation of EC. The Kaplan-Meier curve indicated that high FOXK1 expression may result in poor prognosis of EC patients. Furthermore, overexpression of FOXK1 in EC9706 cell inhibited cell apoptosis and promoted cell proliferation and migration, and suppression of FOXK1 in EC109 cell obtained reverse results. Our data suggest that FOXK1 plays an oncogenic role in EC pathogenesis and can serve as a therapeutic target for patients with EC.


Assuntos
Neoplasias Esofágicas/etiologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas Oncogênicas/metabolismo , Adulto , Idoso , Apoptose , Carcinogênese/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Prognóstico , RNA Interferente Pequeno/genética
20.
J Biol Chem ; 290(49): 29617-28, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26468278

RESUMO

JLP (JNK-associated leucine zipper protein) is a scaffolding protein that interacts with various signaling proteins associated with coordinated regulation of cellular process such as endocytosis, motility, neurite outgrowth, cell proliferation, and apoptosis. Here we identified PLK1 (Polo-like kinase 1) as a novel interaction partner of JLP through mass spectrometric approaches. Our results indicate that JLP is phospho-primed by PLK1 on Thr-351, which is recognized by the Polo box domain of PLK1 leading to phosphorylation of JLP at additional sites. Stable isotope labeling by amino acids in cell culture and quantitative LC-MS/MS analysis was performed to identify PLK1-dependent JLP-interacting proteins. Treatment of cells with the PLK1 kinase inhibitor BI2536 suppressed binding of the Forkhead box protein K1 (FOXK1) transcriptional repressor to JLP. JLP was found to interact with PLK1 and FOXK1 during mitosis. Moreover, knockdown of PLK1 affected the interaction between JLP and FOXK1. FOXK1 is a known transcriptional repressor of the CDK inhibitor p21/WAF1, and knockdown of JLP resulted in increased FOXK1 protein levels and a reduction of p21 transcript levels. Our results suggest a novel mechanism by which FOXK1 protein levels and activity are regulated by associating with JLP and PLK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antimitóticos/química , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas , Camundongos , Mitose , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Pteridinas/química , Transdução de Sinais , Espectrometria de Massas em Tandem , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA