Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.097
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2206860120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523546

RESUMO

Mbtd1 (mbt domain containing 1) encodes a nuclear protein containing a zinc finger domain and four malignant brain tumor (MBT) repeats. We previously generated Mbtd1-deficient mice and found that MBTD1 is highly expressed in fetal hematopoietic stem cells (HSCs) and sustains the number and function of fetal HSCs. However, since Mbtd1-deficient mice die soon after birth possibly due to skeletal abnormalities, its role in adult hematopoiesis remains unclear. To address this issue, we generated Mbtd1 conditional knockout mice and analyzed adult hematopoietic tissues deficient in Mbtd1. We observed that the numbers of HSCs and progenitors increased and Mbtd1-deficient HSCs exhibited hyperactive cell cycle, resulting in a defective response to exogenous stresses. Mechanistically, we found that MBTD1 directly binds to the promoter region of FoxO3a, encoding a forkhead protein essential for HSC quiescence, and interacts with components of TIP60 chromatin remodeling complex and other proteins involved in HSC and other stem cell functions. Restoration of FOXO3a activity in Mbtd1-deficient HSCs in vivo rescued cell cycle and pool size abnormalities. These findings indicate that MBTD1 is a critical regulator for HSC pool size and function, mainly through the maintenance of cell cycle quiescence by FOXO3a.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Ciclo Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/metabolismo
2.
Stem Cells ; 42(5): 475-490, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38427800

RESUMO

Cellular senescence significantly affects the proliferative and differentiation capacities of mesenchymal stem cells (MSCs). Identifying key regulators of senescence and exploring potential intervention strategies, including drug-based approaches, are active areas of research. In this context, S-adenosyl-l-methionine (SAM), a critical intermediate in sulfur amino acid metabolism, emerges as a promising candidate for mitigating MSC senescence. In a hydrogen peroxide-induced MSC aging model (100 µM for 2 hours), SAM (50 and 100 µM) was revealed to alleviate the senescence of MSCs, and also attenuated the level of reactive oxygen species and enhanced the adipogenic and osteogenic differentiation in senescent MSCs. In a premature aging mouse model (subcutaneously injected with 150 mg/kg/day d-galactose in the neck and back for 7 weeks), SAM (30 mg/kg/day by gavage for 5 weeks) was shown to delay the overall aging process while increasing the number and thickness of bone trabeculae in the distal femur. Mechanistically, activation of PI3K/AKT signaling and increased phosphorylation of forkhead box O3 (FOXO3a) was proved to be associated with the antisenescence role of SAM. These findings highlight that the PI3K/AKT/FOXO3a axis in MSCs could play a crucial role in MSCs senescence and suggest that SAM may be a potential therapeutic drug for MSCs senescence and related diseases.


Assuntos
Senescência Celular , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , S-Adenosilmetionina , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Senescência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BL
3.
FASEB J ; 38(5): e23506, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411466

RESUMO

The reserve pool of primordial follicles (PMFs) is finely regulated by molecules implicated in follicular growth or PMF survival. Anti-Müllerian hormone (AMH), produced by granulosa cells of growing follicles, is known for its inhibitory role in the initiation of PMF growth. We observed in a recent in vivo study that injection of AMH into mice seemed to induce an activation of autophagy. Furthermore, injection of AMH into mice activates the transcription factor FOXO3A which is also known for its implication in autophagy regulation. Many studies highlighted the key role of autophagy in the ovary at different stages of folliculogenesis, particularly in PMF survival. Through an in vitro approach with organotypic cultures of prepubertal mouse ovaries, treated or not with AMH, we aimed to understand the link among AMH, autophagy, and FOXO3A transcription factor. Autophagy and FOXO3A phosphorylation were analyzed by western blot. The expression of genes involved in autophagy was quantified by RT-qPCR. In our in vitro model, we confirmed the decrease in FOXO3A phosphorylation and the induction of autophagy in ovaries incubated with AMH. AMH also induces the expression of genes involved in autophagy. Interestingly, most of these genes are known to be FOXO3A target genes. In conclusion, we have identified a new role for AMH, namely the induction of autophagy, probably through FOXO3A activation. Thus, AMH protects the ovarian reserve not only by inhibiting the growth of PMFs but also by enabling their survival through activation of autophagy.


Assuntos
Hormônio Antimülleriano , Hormônios Peptídicos , Feminino , Animais , Camundongos , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/farmacologia , Folículo Ovariano , Ovário , Fator de Crescimento Transformador beta , Autofagia , Fatores de Transcrição
4.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354025

RESUMO

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Assuntos
Carcinoma Hepatocelular , Inibidores da Dipeptidil Peptidase IV , Neoplasias Hepáticas , Animais , Ratos , Linagliptina/farmacologia , Proteínas Quinases Ativadas por AMP , Dietilnitrosamina/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Hipoglicemiantes , Inibidores de Proteases , Antivirais , Anti-Inflamatórios
5.
Proc Natl Acad Sci U S A ; 119(11): e2118285119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271390

RESUMO

SignificanceUnderstanding autophagy regulation is instrumental in developing therapeutic interventions for autophagy-associated disease. Here, we identified SNAI2 as a regulator of autophagy from a genome-wide screen in HeLa cells. Upon energy stress, SNAI2 is transcriptionally activated by FOXO3 and interacts with FOXO3 to form a feed-forward regulatory loop to reinforce the expression of autophagy genes. Of note, SNAI2-increased FOXO3-DNA binding abrogates CRM1-dependent FOXO3 nuclear export, illuminating a pivotal role of DNA in the nuclear retention of nucleocytoplasmic shuttling proteins. Moreover, a dFoxO-Snail feed-forward loop regulates both autophagy and cell size in Drosophila, suggesting this evolutionarily conserved regulatory loop is engaged in more physiological activities.


Assuntos
Autofagia , Núcleo Celular , Proteína Forkhead Box O3 , Fatores de Transcrição da Família Snail , Transporte Ativo do Núcleo Celular , Animais , Autofagia/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HeLa , Humanos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
6.
J Cell Mol Med ; 28(1): e18041, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987202

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is difficult to treat due to the high recurrence rate and therapy intolerance, so finding potential therapeutic targets for DLBCL is critical. FK506-binding protein 3 (FKBP3) contributes to the progression of various cancers and is highly expressed in DLBCL, but the role of FKBP3 in DLBCL and its mechanism are not clear. Our study demonstrated that FKBP3 aggravated the proliferation and stemness of DLBCL cells, and tumour growth in a xenograft mouse model. The interaction between FKBP3 and parkinsonism associated deglycase (PARK7) in DB cells was found using co-immunoprecipitation assay. Knockdown of FKBP3 enhanced the degradation of PARK7 through increasing its ubiquitination modification. Forkhead Box O3 (FOXO3) belongs to the forkhead family of transcription factors and inhibits DLBCL, but the underlying mechanism has not been reported. We found that FOXO3 bound the promoter of FKBP3 and then suppressed its transcription, eventually weakening DLBCL. Mechanically, FKBP3 activated Wnt/ß-catenin signalling pathway mediated by PARK7. Together, FKBP3 increased PARK7 and then facilitated the malignant phenotype of DLBCL through activating Wnt/ß-catenin pathway. These results indicated that FKBP3 might be a potential therapeutic target for the treatment of DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/metabolismo , Proteína Desglicase DJ-1/genética , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Wnt/genética , Fenótipo , Linfoma Difuso de Grandes Células B/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a Tacrolimo/metabolismo
7.
J Cell Mol Med ; 28(1): e18007, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890842

RESUMO

Microglial HO-1 regulates iron metabolism in the brain. Intracerebral haemorrhage (ICH) shares features of ferroptosis and necroptosis; hemin is an oxidized product of haemoglobin from lysed red blood cells, leading to secondary injury. However, little is known about the underlying molecular mechanisms attributable to secondary injury by hemin or ICH. In this study, we first show that FoxO3a was highly co-located with neurons and microglia but not astrocytes area of ICH model mice. Hemin activated FoxO3a/ATG-mediated autophagy and HO-1 signalling resulting in ferroptosis in vitro and in a mice model of brain haemorrhage. Accordingly, autophagy inhibitor Baf-A1 or HO-1 inhibitor ZnPP protected against hemin-induced ferroptosis. Hemin promoted ferroptosis of neuronal cells via FoxO3a/ATG-mediated autophagy and HO-1 signalling pathway. Knock-down of FoxO3a inhibited autophagy and prevented hemin-induced ferroptosis dependent of HO-1 signalling. We first showed that hemin stimulated microglial FoxO3a/HO-1 expression and enhanced the microglial polarisation towards the M1 phenotype, while knockdown of microglial FoxO3a inhibited pro-inflammatory cytokine production in microglia. Furthermore, the microglia activation in the striatum showed significant along with a high expression level of FoxO3a in the ICH mice. We found that conditional knockout of FoxO3a in microglia in mice alleviated neurological deficits and microglia activation as well as ferroptosis-induced striatum injury in the autologous blood-induced ICH model. We demonstrate, for the first time, that FoxO3a/ATG-mediated autophagy and HO-1 play an important role in microglial activation and ferroptosis-induced striatum injury of ICH, identifying a new therapeutic avenue for the treatment of ICH.


Assuntos
Lesões Encefálicas , Ferroptose , Camundongos , Animais , Microglia/metabolismo , Heme Oxigenase-1/metabolismo , Hemina , Hemorragia Cerebral/complicações , Autofagia , Lesões Encefálicas/metabolismo
8.
J Cell Biochem ; : e30641, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175152

RESUMO

The lack of amino acids triggers the autophagic response. Some studies have shown such starvation conditions also induce mitochondrial fusion, revealing a close correlation between the two processes. Although Mitofusin-2 (MFN2) has been demonstrated to play a role in fusion regulation, its role in the autophagic response and the variables that activate MFN2 under stress remain unknown. In this investigation, we screened and confirmed that forkhead box protein O3 (FOXO3) participates in MFN2's expression during short periods of starvation. Luciferase reporter test proved that FOXO3 facilitates MFN2's transcription by binding to its promoter region, and FOXO3 downregulation directly depresses MFN2's expression. Consequently, inhibiting the FOXO3-MFN2 axis results in the loss of mitochondrial fusion, disrupting the normal morphology of mitochondria, impairing the degradation of substrates, and reducing autophagosome accumulation, ultimately leading to the blockage of the autophagy. In conclusion, our work demonstrates that the FOXO3-MFN2 pathway is essential for adaptive changes in mitochondrial morphology and cellular autophagy response under nutritional constraints.

9.
J Cell Biochem ; 125(3): e30527, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332574

RESUMO

The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo
10.
EMBO J ; 39(12): e103181, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32368828

RESUMO

N6-methyladenosine (m6 A) is an abundant nucleotide modification in mRNA, known to regulate mRNA stability, splicing, and translation, but it is unclear whether it is also has a physiological role in the intratumoral microenvironment and cancer drug resistance. Here, we find that METTL3, a primary m6 A methyltransferase, is significantly down-regulated in human sorafenib-resistant hepatocellular carcinoma (HCC). Depletion of METTL3 under hypoxia promotes sorafenib resistance and expression of angiogenesis genes in cultured HCC cells and activates autophagy-associated pathways. Mechanistically, we have identified FOXO3 as a key downstream target of METTL3, with m6 A modification of the FOXO3 mRNA 3'-untranslated region increasing its stability through a YTHDF1-dependent mechanism. Analysis of clinical samples furthermore showed that METTL3 and FOXO3 levels are tightly correlated in HCC patients. In mouse xenograft models, METTL3 depletion significantly enhances sorafenib resistance of HCC by abolishing the identified METTL3-mediated FOXO3 mRNA stabilization, and overexpression of FOXO3 restores m6 A-dependent sorafenib sensitivity. Collectively, our work reveals a critical function for METTL3-mediated m6 A modification in the hypoxic tumor microenvironment and identifies FOXO3 as an important target of m6 A modification in the resistance of HCC to sorafenib therapy.


Assuntos
Adenosina/análogos & derivados , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Sorafenibe/farmacologia , Adenosina/genética , Adenosina/metabolismo , Animais , Autofagia/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteína Forkhead Box O3/genética , Células HEK293 , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Metilação/efeitos dos fármacos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Neoplásico/genética
11.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G247-G251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193202

RESUMO

The Forkhead box O3 (FOXO3) transcription factor regulates the expression of genes critical for diverse cellular functions in homeostasis. Diminished FOXO3 activity is associated with human diseases such as obesity, metabolic diseases, inflammatory diseases, and cancer. In the mouse colon, FOXO3 deficiency leads to an inflammatory immune landscape and dysregulated molecular pathways, which, under various insults, exacerbates inflammation and tumor burden, mimicking characteristics of human diseases. This deficiency also results in dysregulated lipid metabolism, and consequently, the accumulation of intracellular lipid droplets (LDs) in colonic epithelial cells and infiltrated immune cells. FOXO3 and LDs form a self-reinforcing negative regulatory loop in colonic epithelial cells, neutrophils, and macrophages, which is associated with inflammatory bowel disease and colon cancer, particularly in the context of obesity.


Assuntos
Neoplasias do Colo , Fatores de Transcrição Forkhead , Animais , Camundongos , Humanos , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias do Colo/metabolismo , Obesidade
12.
Mol Med ; 30(1): 113, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095693

RESUMO

BACKGROUND: To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS: An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, ß-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS: HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, ß-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS: Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.


Assuntos
Dieta Hiperlipídica , Sistema Nervoso Entérico , Flavonas , Proteína Forkhead Box O3 , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Proteína Forkhead Box O3/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Masculino , Flavonas/farmacologia , Flavonas/uso terapêutico , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Ratos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Apoptose/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 696: 149506, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224665

RESUMO

AIM: To evaluate the synergistic effect of combined treatment with melatonin (MEL) and resveratrol (RES) in cisplatin (CIS)-induced premature ovarian failure (POF) model in rats and to elucidate the molecular mechanism of this therapeutic effect. MATERIAL & METHODS: Female Sprague Dawley rats were divided into 7 experimental groups as follows; CONT (Control), CIS, MEL, RES, POF + MEL, POF + RES, and POF + MEL + RES. H&E staining was performed to evaluate follicular cell vacuolization/degeneration, vascular congestion/hemorrhage, and inflammation, by using an ordinal scale from 0 to 4 to grade the severity of observed changes (0 = normal, 1 = mild, 2 = moderate, 3 = severe, 4 = very severe). Zona pellucida integrity and connective tissue amount in the ovarian tissue were detected using PAS & Masson Trichrome staining. The immunofluorescence method was used to determine the immune localizations of pH2Ax, SIRT1, FOXO3a, and BCL2. The connective tissue amounts and immunoreactivity staining intensities were measured using ImageJ. The gene expression of SIRT1, FOXO3a, and BCL2 was determined using RT-PCR. Serum estrogen hormone levels were measured by ELISA. Statistically, Bonferroni correction was performed, and p < 0.002 were considered significant. RESULTS: A significant difference was observed in the POF group compared to the CONT group in all parameters except tertiary follicle count and hemorrhage. The decrease in the number of atretic follicles in the POF + MEL + RES group was found significant compared to both POF + MEL and POF + RES groups. The expression of pH2Ax, SIRT1, FOXO3a, and BCL2 at the protein level and SIRT1 and BCL2 at the mRNA level were significant in the POF + MEL + RES group compared to the POF group. Between the single and combination treatment groups, the difference in protein level was found in pH2Ax, SIRT1, FOXO3a, and BCL2 expression. The POF + MEL + RES group exhibited significantly higher SIRT1 mRNA expression compared to the groups receiving single treatments. CONCLUSION: The present study provides evidence that MEL and RES have synergistic effects in preventing the decrease in follicle reserve and increase in DNA break (pH2Ax) and follicle atresia in POF ovaries. This therapeutic effect is mediated by SIRT1 overexpression and activation of the SIRT1/FOXO3a/BCL2 pathway.


Assuntos
Melatonina , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/induzido quimicamente , Resveratrol , Melatonina/farmacologia , Melatonina/uso terapêutico , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ratos Sprague-Dawley , Cisplatino/uso terapêutico , Hemorragia , RNA Mensageiro , Proteínas Proto-Oncogênicas c-bcl-2
14.
Mol Carcinog ; 63(5): 951-961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362840

RESUMO

Empty spiracles homeobox 2 (EMX2) is initially identified as a key transcription factor that plays an essential role in the regulation of neuronal development and some brain disorders. Recently, several studies emphasized that EMX2 could as a tumor suppressor, but its role in human clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we investigated the role and underlying mechanism of EMX2 in the regulation of ccRCC progress. Our results demonstrated that EMX2 expression was markedly decreased in ccRCC tissues and cell lines, and low EMX2 expression predicted the poor prognosis of ccRCC patients. In addition, forced expression of EMX2 significantly inhibited the cell growth, migration, and invasion in vitro, as well as ccRCC tumor growth in nude mice, via, at least in part, regulating Akt/FOXO3a pathway. In detail, EMX2 could attenuate the phosphorylation levels of Akt and FOXO3a, and increase FOXO3a expression without affecting total Akt expression in vivo and in vitro. Meanwhile, shRNA-mediated knockdown of FOXO3a expression could obviously attenuate the effects of EMX2 on cell growth, migration, invasion, and tumor growth. Furthermore, EMX2 could significantly attenuate the interaction between Akt and FOXO3a. Taken together, our results demonstrated that EMX2 could inhibit ccRCC progress through, at least in part, modulating Akt/FOXO3a signaling pathway, thus representing a novel role and underlying mechanism of EMX2 in the regulation of ccRCC progress.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Forkhead Box O3/metabolismo
15.
J Transl Med ; 22(1): 350, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609979

RESUMO

BACKGROUND: Olfactory dysfunction occurs frequently in Parkinson's disease (PD). In this study, we aimed to explore the potential biomarkers and underlying molecular pathways of nicotine for the treatment of olfactory dysfunction in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. METHODS: MPTP was introduced into C57BL/6 male mice to generate a PD model. Regarding in vivo experiments, we performed behavioral tests to estimate the protective effects of nicotine in MPTP-induced PD mice. RNA sequencing and traditional molecular methods were used to identify molecules, pathways, and biological processes in the olfactory bulb of PD mouse models. Then, in vitro experiments were conducted to evaluate whether nicotine can activate the prok2R/Akt/FoxO3a signaling pathway in both HEK293T cell lines and primary olfactory neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Next, prok2R overexpression (prok2R+) and knockdown (prok2R-) were introduced with lentivirus, and the Akt/FoxO3a signaling pathway was further explored. Finally, the damaging effects of MPP+ were evaluated in prok2R overexpression (prok2R+) HEK293T cell lines. RESULTS: Nicotine intervention significantly alleviated olfactory and motor dysfunctions in mice with PD. The prok2R/Akt/FoxO3a signaling pathway was activated after nicotine treatment. Consequently, apoptosis of olfactory sensory neurons was significantly reduced. Furthermore, prok2R+ and prok2R- HEK293T cell lines exhibited upregulation and downregulation of the Akt/FoxO3a signaling pathway, respectively. Additionally, prok2R+ HEK293T cells were resistant to MPP+-induced apoptosis. CONCLUSIONS: This study showed the effectiveness and underlying mechanisms of nicotine in improving hyposmia in PD mice. These improvements were correlated with reduced apoptosis of olfactory sensory neurons via activated prok2R/Akt/FoxO3a axis. These results explained the potential protective functions of nicotine in PD patients.


Assuntos
Transtornos do Olfato , Doença de Parkinson , Humanos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células HEK293 , Nicotina/farmacologia , Doença de Parkinson/complicações , Proteínas Proto-Oncogênicas c-akt , Transtornos do Olfato/complicações , Transtornos do Olfato/tratamento farmacológico
16.
Oncology ; 102(4): 299-309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37857267

RESUMO

INTRODUCTION: Colorectal cancer (CRC) heritability is determined by the composite relations between inherited variants and environmental factors. In developing countries like India, the incidence rates of CRC are especially increasing. In this study, we have focused on the distribution of the FOXO3 gene polymorphisms among the patients with CRC in North India. METHODS: A case-control study was conducted on 487 CRC patients and 487 age-matched controls. We genotyped single-nucleotide polymorphisms rs2253310 and rs4946936 through polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis and PCR-single-stranded conformation polymorphism procedure followed by sequence detection. RESULTS: A significantly increased risk of CRC was observed for the CC genotype of the rs4946936 polymorphism compared to the TT genotype (p = 0.02; odd ratio [OR] = 1.40, confidence interval [CI] = 1.05-1.87). GT haplotype appeared to be a "risk" haplotype (OR = 1.71, 95% CI = 0.82-2.19), while as other haplotypes CC (OR = 0.83, 95% CI = 0.32-1.54), CT (OR = 0.75, 95% CI = 0.25-1.01), and GC (OR = 0.98, 95% CI = 0.88-1.14) were found to be "protective" for developing CRC. CONCLUSION: This study suggests an association of increased risk of CRC with the rs4946936 polymorphism but not with the rs2253310 polymorphism.


Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Perfil Genético , Neoplasias Colorretais/genética , Neoplasias Colorretais/epidemiologia , Genótipo , Proteína Forkhead Box O3/genética
17.
Exp Eye Res ; 244: 109919, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729254

RESUMO

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.


Assuntos
Âmnio , Exossomos , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Degeneração Retiniana , Epitélio Pigmentado da Retina , Transdução de Sinais , Humanos , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Âmnio/citologia , Meios de Cultivo Condicionados/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/etiologia , Proteína Forkhead Box O3/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Apoptose , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial , Western Blotting , Animais , Sobrevivência Celular , Peróxido de Hidrogênio/toxicidade
18.
FASEB J ; 37(10): e23143, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37698353

RESUMO

Cuproptosis, a new type of copper-induced cell death, is involved in the antitumor activity and resistance of multiple chemotherapeutic drugs. Our previous study revealed that adrenomedullin (ADM) was engaged in sunitinib resistance in clear cell renal cell carcinoma (ccRCC). However, it has yet to be investigated whether and how ADM regulates sunitinib resistance by cuproptosis. This study found that the ADM expression was elevated in sunitinib-resistant ccRCC tissues and cells. Furthermore, the upregulation of ADM significantly enhanced the chemoresistance of sunitinib compared with their respective control. Moreover, cuproptosis was involved in ADM-regulated sunitinib resistance by inhibiting mammalian ferredoxin 1 (FDX1) expression. Mechanically, the upregulated ADM activates the p38/MAPK signaling pathway to promote Forkhead box O3 (FOXO3) phosphorylation and its entry into the nucleus. Consequently, the increased FOXO3 in the nucleus inhibited FDX1 transcription and cell cuproptosis, promoting chemoresistance. Collectively, cuproptosis has a critical effector role in ccRCC progress and chemoresistance and thus is a relevant target to eradicate the cell population of sunitinib resistance.


Assuntos
Apoptose , Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Animais , Adrenomedulina/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Sunitinibe/farmacologia , Cobre
19.
FASEB J ; 37(2): e22760, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607643

RESUMO

The activation of endogenous neural stem cells (NSCs) is considered an important mechanism of neural repair after mechanical spinal cord injury; however, whether endogenous NSC proliferation can also occur after spinal cord ischemia-reperfusion injury (SCIRI) remains unclear. In this study, we aimed to verify the existence of endogenous NSC proliferation after SCIRI and explore the underlying molecular mechanism. NSC proliferation was observed after SCIRI in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) in vitro, accompanied by a decrease in forkhead box protein O 3a (FOXO3a) expression. This downward trend was regulated by the increased expression of microRNA-872-5p (miR-872-5p). miR-872-5p affected NSC proliferation by targeting FOXO3a to increase the expression of ß-catenin and T-cell factor 4 (TCF4). In addition, TCF4 in turn acted as a transcription factor to increase the expression level of miR-872-5p, and knockdown of FOXO3a enhanced the binding of TCF4 to the miR-872-5p promoter. In conclusion, SCIRI in vivo and OGD/R in vitro stimulated the miR-872-5p/FOXO3a/ß-catenin-TCF4 pathway, thereby promoting NSC proliferation. At the same time, FOXO3a affected TCF4 transcription factor activity and miR-872-5p expression, forming a positive feedback loop that promotes NSC proliferation.


Assuntos
MicroRNAs , Células-Tronco Neurais , Traumatismo por Reperfusão , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Células-Tronco Neurais/metabolismo , Medula Espinal/metabolismo , Oxigênio/metabolismo , Proliferação de Células , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Apoptose
20.
Biogerontology ; 25(1): 23-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37646881

RESUMO

FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.


Assuntos
MicroRNAs , MicroRNAs/genética , Senescência Celular , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA