Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anim Welf ; 33: e6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510420

RESUMO

Finfishes are caught from the wild for food, feed (often in the form of fishmeal and oil) and bait. According to the Food and Agriculture Organisation of the United Nations (FAO), between 74 and 83 million tonnes (averaging 77 million tonnes) were caught annually in 2000-2019. Although fishes are now widely recognised as sentient beings, capture is still quantified as biomass rather than number of individuals (in contrast to wild-caught marine mammals and crocodiles; and farmed mammals and birds). Here, we estimate global numbers of wild-caught finfishes using FAO capture production (landing) tonnages (2000-2019 data) and estimates of mean individual weight at capture, based on internet-sourced capture and market weights. We estimate that between 1,100 and 2,200 billion (1.1-2.2 × 1012), or 1.1-2.2 trillion, wild finfishes were caught annually, on average, during 2000-2019. Anchoveta (Engraulis ringens) comprised 28%, by estimate midpoint. Estimated numbers in 2019, totalling 980-1,900 billion, were lower due to reduced anchoveta landings, but still represented 87.5% of vertebrate numbers killed for food or feed, as obtained or estimated from FAO data. These figures exclude unrecorded capture such as illegal fishing, discards and ghost fishing. Estimated finfish numbers used for reduction to fishmeal and oil represented 56% of the total 2010 estimate (1,000-1,900 billion), by midpoint. It is recommended that the FAO reports fish capture numbers. The welfare of wild-caught fishes, which is generally very poor during and after capture, should be addressed as part of sustainable utilisation of aquatic resources.

2.
J Fish Biol ; 104(3): 758-768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950685

RESUMO

Environmental enrichment has the potential to improve the welfare and post-release survival of hatchery fish stocked for conservation purposes. However, the effectiveness of environmental enrichment is partly dependent on the fish species, life stage, and specific enrichment structure used. To enhance the effectiveness of environmental enrichment, it is crucial to focus on characteristic differences in enrichment structures, such as type and level. This study investigated how differences in enrichment type and level affected physiological and behavioral aspects of the welfare of pre-release juvenile rock bream Oplegnathus fasciatus by evaluating growth performance, basal and stressed cortisol levels, antioxidant enzyme activities, and exploratory behaviors regarding anxiety and flexibility. Fish were reared for 4 weeks in different enrichment treatments: barren, low-level cover structure, high-level cover structure, low-level interference structure (LI), and high-level interference structure (HI). The results revealed that fish reared with the LI treatment showed less anxiety and greater flexibility with respect to exploratory behaviors, without oxidative damage being detected. Despite exhibiting less anxiety as well, fish reared in the HI treatment had oxidative damage, indicated by lower superoxide dismutase activity, compared to those in the barren treatment. In addition, none of these enrichment structures enhanced growth performance or mitigate chronic and acute stress responses. Overall, the low-level interference structure may be more favorable in promoting the behavioral welfare of the fish. Application of this type and level of enrichment may increase the survival of the hatchery fish after release, which is critical to stocking success.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Perciformes/metabolismo , Peixes/metabolismo , Estresse Oxidativo , Proteínas de Peixes/genética , Filogenia
3.
J Fish Biol ; 104(6): 1654-1661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423545

RESUMO

The principles of three Rs-REPLACEMENT, REDUCTION, and REFINEMENT-govern the protection and use of animals, including fish, for research purposes in the European Union and Norway. In this paper, we discuss some straightforward steps to simplify the delivery of these principles at the idea stage and adapt some of these examples for conducting fish trials related to health and welfare. Although some of the approaches are well established in other animal science arenas, we believe there can be a timely recap of their key facets. We discuss a number of simple strategies to emphasize how a reduction in fish numbers can be achieved from initial project conception to implementation, highlighting not only their advantages but also their limitations. We also highlight the role that funding agencies can play in the implementation of the 3R principles in aquaculture research. These simple points can be used in frameworks to initiate a broader and dynamic intersectoral dialogue among stakeholders of aquaculture research on how to promote ethics and embrace opportunities for this within the tenets of the 3Rs.


Assuntos
Bem-Estar do Animal , Aquicultura , Animais , Aquicultura/métodos , Peixes , União Europeia , Noruega
4.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337324

RESUMO

DNA methylation clocks provide information not only about chronological but also biological age, offering a high-resolution and precise understanding of age-related pathology and physiology. Attempts based on transcriptomic and epigenetic approaches arise as integrative biomarkers linking the quantification of stress responses with specific fitness traits and may help identify biological age markers, which are also considered welfare indicators. In gilthead sea bream, targeted gene expression and DNA methylation analyses in white skeletal muscle proved sirt1 as a reliable marker of age-mediated changes in energy metabolism. To complete the list of welfare auditing biomarkers, wide analyses of gene expression and DNA methylation in one- and three-year-old fish were combined. After discriminant analysis, 668 differentially expressed transcripts were matched with those containing differentially methylated (DM) regions (14,366), and 172 were overlapping. Through enrichment analyses and selection, two sets of genes were retained: 33 showing an opposite trend for DNA methylation and expression, and 57 down-regulated and hypo-methylated. The first set displayed an apparently more reproducible and reliable pattern and 10 multifunctional genes with DM CpG in regulatory regions (sirt1, smad1, ramp1, psmd2-up-regulated; col5a1, calcrl, bmp1, thrb, spred2, atp1a2-down-regulated) were deemed candidate biological age markers for improved welfare auditing in gilthead sea bream.


Assuntos
Biomarcadores , Metilação de DNA , Epigênese Genética , Dourada , Transcriptoma , Animais , Dourada/genética , Dourada/metabolismo , Envelhecimento/genética , Bem-Estar do Animal , Perfilação da Expressão Gênica
5.
Vet Res ; 54(1): 3, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694262

RESUMO

Fish health personnel have limited tools in combatting viral diseases such as heart and skeletal muscle inflammation (HSMI) in open net-pen farmed Atlantic salmon. In this study, we aimed to predict HSMI by intensified health monitoring and apply clinical nutrition to mitigate the condition. We followed a commercial cohort (G1) of Atlantic salmon that was PRV-1 naïve when transferred to a sea cage at a location where HSMI outbreaks commonly occur. The fish in the other cages (G2-G6) at the location had a different origin than G1 and were PRV-1 positive prior to sea transfer. By continuous analysis of production data and sequentially (approximately every fourth week) performing autopsy, RT-qPCR (for PRV-1 and selected immune genes), blood and histological analysis of 10 fish from G1 and G2, we identified the time of PRV-1 infection in G1 and predicted the onset of HSMI prior to any clinical signs of disease. Identical sequences across partial genomes of PRV-1 isolates from G1 and G2 suggest the likely transfer from infected cages to G1. The isolates were grouped into a genogroup known to be of high virulence. A commercial health diet was applied during the HSMI outbreak, and the fish had low mortality and an unaffected appetite. In conclusion, we show that fish health and welfare can benefit from in-depth health monitoring. We also discuss the potential health value of clinical nutrition as a mean to mitigate HSMI.


Assuntos
Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Salmo salar , Animais , Infecções por Reoviridae/veterinária , Músculo Esquelético , Surtos de Doenças/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Orthoreovirus/genética
6.
Dis Aquat Organ ; 153: 81-85, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951256

RESUMO

Microplastics have been found in all surveyed ecosystems and in the diet of multiple species. Detrimental health impacts of microplastic consumption include reduced growth and fecundity, metabolic stress and immune alterations for both invertebrates and vertebrates. Limited information exists, however, on how disease resistance may be affected by microplastic exposure and consumption. Here, the impact of microplastic (0.01 and 0.05 mg l-1 of polypropylene) on fish host susceptibility to disease and mortality was assessed using the guppy Poecilia reticulata-gyrodactylid Gyrodactylus turnbulli system. Fish exposed to and/or consuming microplastic at both concentrations demonstrated significantly higher pathogen burdens over time compared with fish fed a plastic-free diet. Furthermore, microplastic (at both tested concentrations) was associated with increased mortality events for fish within all treatments, regardless of host infection status. This study adds to the growing body of evidence showing that microplastic pollution can be detrimental to fish welfare by reducing disease resistance.


Assuntos
Poecilia , Infecções por Trematódeos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Resistência à Doença , Ecossistema , Infecções por Trematódeos/veterinária , Água Doce , Poluentes Químicos da Água/toxicidade
7.
Anim Welf ; 32: e12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487450

RESUMO

Global farmed finfish production increased from 9 to 56 million tonnes between 1990 and 2019. Although finfishes are now widely recognised as sentient beings, production is still being quantified as biomass rather than number of individuals (in contrast to farmed mammals and birds). Here, we estimate the global number of farmed finfishes slaughtered using FAO aquaculture production tonnages (1990-2019 data) and estimates of individual weight at killing (determined from internet searches at species and country level where possible). We relate these numbers to knowledge on humane slaughter, animal welfare law, and certification schemes. Since 1990, farmed finfish numbers killed annually for food have increased nine-fold, to 124 billion (1.24 × 1011, range 78-171 billion) in 2019. This figure does not represent the total number farmed (due to mortalities during rearing and non-food production) and is expected to increase as aquaculture expands. Our estimates indicate that farmed finfishes now outnumber the 80 billion farmed birds and mammals killed globally each year for food. The majority are produced in Asia. Inhumane slaughter practices cause suffering for most farmed finfishes. Most, 70-72%, have no legal welfare protection, and less than 1% have any fish-specific legal protection, at slaughter. The main global certification schemes in 2013-2015 accounted for 2% of slaughtered farmed finfishes. Fishes for which species-specific parameters for automated humane stunning are published comprise 20-24%. As the dominant taxa of farmed vertebrates, finfishes would benefit from better welfare if species-specific humane slaughter was defined and incorporated into laws and certification schemes.

8.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175982

RESUMO

In recent years, flathead grey mullets (Mugil cephalus) cultured in Eilat (Israel) have been highly affected by Vibrio harveyi, showing neurological signs such as uncoordinated circular swimming followed by high mortality rates. Despite the advances in and different approaches to control vibriosis associated with Vibrio harveyi, including commercial vaccines, most of them have not succeeded in long-term protection. In this study, we evaluated the effectiveness, long-term protection, and antibody production of three vaccine preparations: heat-killed bacteria (HKB), membrane proteins denaturation (BME PROT), and internal proteins (INT PROT) developed specifically against Vibrio harveyi for grey mullets. Our results show that fish immunized with heat-killed bacteria emulsified with adjuvant presented the most effective and long-lasting protection against the bacterium, and a cross-protection against other bacteria from the harveyi clade. The effectiveness of each immunization treatment correlated with the levels of specific antibody production against Vibrio harveyi in the serum of the immunized fish.


Assuntos
Doenças dos Peixes , Smegmamorpha , Vibrioses , Vibrio , Animais , Vacinas Bacterianas , Vibrioses/prevenção & controle , Vibrioses/veterinária , Imunização
9.
J Fish Biol ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278313

RESUMO

Sea lice represent a persistent and growing problem, challenging the resilience and growth of the salmon aquaculture industry. In this Norwegian case study, we studied and discuss how the absence of policy instruments directed at stimulating breeding for lice resistance (LR) might be explained. We found well-documented opportunities for selection progress for LR. Hence, breeding on LR appears with an untapped potential. We discuss how market-based, legal, institutional and interest-based factors can explain the absence of policy instruments stimulating LR breeding. Methodologically, we obtained data from document and literature studies and interviews with key players (salmon breeders, farmers, nongovernmental organizations (NGOs) and governmental bodies in Norway). First, LR is a polygenic trait, which makes it poorly suited for patenting. Furthermore, if only a small proportion of fish farmers choose seeds with higher LR, other operators can easily take on the free-rider role because they will not suffer from reduced gain in growth performance as a result of a much stronger emphasis on LR in the breeding goal. The market is thus not expected to stimulate stronger selection for LR in Norwegian salmon breeding. Second, neither genetic engineering (e.g., gene editing), still struggling with consumer acceptance, nor the uncertainty associated with possible changes in the Norwegian Gene Technology Act stimulate investment in LR via, for example, CRISPR technology. Thirdly, public policy instruments in their entirety have targeted other types of innovations against salmon lice, and none have so far been used to stimulate breeding companies to emphasize LR more strongly in their breeding programmes. From a political point of view, it seems that breeding has been left to the market and the private sector. However, neither the NGOs nor the public seem to be aware of, or pay significant attention to, the breeding potential to improve LR and fish welfare. Fragmented management of the aquaculture sector can camouflage the close ties between political and business interests. The industry is hesitant to invest significantly in long-term breeding targets such as significantly higher genetic LR. This may strengthen the assumption that strong economic interests will reduce the role of science in knowledge-based management. As farmed salmon are increasingly being exposed to stressful delousing treatments, mortality and associated welfare problems have increased significantly. For instance, large fish die more often from cardiomyopathy syndrome (CMS), resulting in growing demand for CMS-resistant salmon. This gives rise to a paradoxical situation: increasing treatments with high mortality and fish welfare issues in farmed salmon, while the lice threat to wild salmon persists.

10.
Fish Physiol Biochem ; 49(4): 577-584, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204544

RESUMO

The trade of aquarium organisms is growing worldwide. This market depends on a continuous supply of healthy and colorful aquatic animals, but this sector has few initiatives. However, in the last decade, there has been a growing interest in researching captive breeding of these animals, aiming to develop a more sustainable aquarium hobby. Larviculture is an important phase in the cultivation process because the larvae are more sensitive to stress and variations in the bulk of variables, such as temperature, salinity, nutritional management, light intensity and spectrum, and environmental background colors. Because background color could be a promoter variable of proper welfare, we tested whether it affects the endocrine response of tomato clownfish Amphiprion frenatus larvae to an acute stress challenge. We show that background color influences the endocrine stress axis responsiveness in tomato clownfish. When fish were subjected to a standard acute stressor of 61 days after hatching, only fish adapted to white walls increased the whole-body cortisol levels. From the results presented herein, we recommend that white tanks be avoided for A. frenatus larviculture. Both, the less stress level and the good welfare condition of larvae reared in colored tanks may have robust, practical applications since almost all clownfish in the ornamental aquarium trade come from captive breeding.


Assuntos
Perciformes , Solanum lycopersicum , Animais , Melhoramento Vegetal , Perciformes/fisiologia , Peixes , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA