Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.478
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(22): 4885-4897.e14, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804832

RESUMO

Human reasoning depends on reusing pieces of information by putting them together in new ways. However, very little is known about how compositional computation is implemented in the brain. Here, we ask participants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI, we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational and compositional. With MEG, we find that replay assembles elements into compounds, with each replay sequence constituting a hypothesis about a possible configuration of elements. The content of sequences evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually converging on the correct configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compositional inference and hypothesis testing.


Assuntos
Hipocampo , Córtex Pré-Frontal , Humanos , Encéfalo , Lobo Frontal , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Córtex Pré-Frontal/fisiologia
2.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37080201

RESUMO

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Assuntos
Eletrônica , Análise de Sequência de RNA , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/metabolismo , Análise de Célula Única , Transcriptoma , Eletrônica/métodos
3.
Annu Rev Biochem ; 83: 553-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606139

RESUMO

Intrinsically disordered proteins (IDPs) and IDP regions fail to form a stable structure, yet they exhibit biological activities. Their mobile flexibility and structural instability are encoded by their amino acid sequences. They recognize proteins, nucleic acids, and other types of partners; they accelerate interactions and chemical reactions between bound partners; and they help accommodate posttranslational modifications, alternative splicing, protein fusions, and insertions or deletions. Overall, IDP-associated biological activities complement those of structured proteins. Recently, there has been an explosion of studies on IDP regions and their functions, yet the discovery and investigation of these proteins have a long, mostly ignored history. Along with recent discoveries, we present several early examples and the mechanisms by which IDPs contribute to function, which we hope will encourage comprehensive discussion of IDPs and IDP regions in biochemistry textbooks. Finally, we propose future directions for IDP research.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Animais , Calcineurina/química , Caseínas/química , Biologia Computacional , Espectroscopia de Ressonância de Spin Eletrônica , Fibrina/química , Fibrinogênio/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fosvitina/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Solubilidade , Tripsina/química , Tripsinogênio/química , Difração de Raios X
4.
Proc Natl Acad Sci U S A ; 121(28): e2320222121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954542

RESUMO

Artificial skins or flexible pressure sensors that mimic human cutaneous mechanoreceptors transduce tactile stimuli to quantitative electrical signals. Conventional trial-and-error designs for such devices follow a forward structure-to-property routine, which is usually time-consuming and determines one possible solution in one run. Data-driven inverse design can precisely target desired functions while showing far higher productivity, however, it is still absent for flexible pressure sensors because of the difficulties in acquiring a large amount of data. Here, we report a property-to-structure inverse design of flexible pressure sensors, exhibiting a significantly greater efficiency than the conventional routine. We use a reduced-order model that analytically constrains the design scope and an iterative "jumping-selection" method together with a surrogate model that enhances data screening. As an exemplary scenario, hundreds of solutions that overcome the intrinsic signal saturation have been predicted by the inverse method, validating for a variety of material systems. The success in property design on multiple indicators demonstrates that the proposed inverse design is an efficient and powerful tool to target multifarious applications of flexible pressure sensors, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces.

5.
Proc Natl Acad Sci U S A ; 121(19): e2403049121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38691587

RESUMO

Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones. We used model proteins such as cytochrome c, laccase, and lipase to screen polymeric monomers and identify the most effective formulations, offering tunable charge and hydrophobic properties. Utilizing a dispersed phase imprinting approach, we employed magnetic beads modified with destabilized whole-protein as solid-phase templates. This process involves medium exchange facilitated by magnetic pulldowns, resulting in the synthesis of nanoMIPs featuring imprinted sites that effectively mimic chaperone cavities. These nanoMIPs were able to selectively refold denatured enzymes, achieving up to 86.7% recovery of their activity, significantly outperforming control samples. Mechanistic studies confirmed that nanoMIPs preferentially bind denatured rather than native enzymes, mimicking natural chaperone interactions. Multifaceted analyses support the functionality of nanoMIPs, which emulate the protective roles of chaperones by selectively engaging with denatured proteins to inhibit aggregation and facilitate refolding. This approach shows promise for widespread use in protein recovery within biocatalysis and biomedicine.


Assuntos
Chaperonas Moleculares , Nanopartículas , Polímeros , Desnaturação Proteica , Nanopartículas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Polímeros/química , Redobramento de Proteína , Dobramento de Proteína , Citocromos c/química , Citocromos c/metabolismo , Lacase/química , Lacase/metabolismo , Lipase/química , Lipase/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(31): e2312371121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042675

RESUMO

Among vertebrates, nearly all oviparous animals are considered to have either obligate aquatic or terrestrial oviposition, with eggs that are specialized for developing in those environments. The terrestrial environment has considerably more oxygen but is dry and thus presents both opportunities and challenges for developing embryos, particularly those adapted for aquatic development. Here, we present evidence from field experiments examining egg-laying behavior, egg size, and egg jelly function of 13 species of Central and South American treefrogs in the genus Dendropsophus, which demonstrates that flexible oviposition (individuals laying eggs both in and out of water) and eggs capable of both aquatic and terrestrial development are the likely factors which enable the transition from aquatic to terrestrial reproduction. Nearly half of the species we studied had previously undescribed degrees of flexible oviposition. Species with obligate terrestrial reproduction have larger eggs than species with aquatic reproduction, and species with flexible reproduction have eggs of intermediate sizes. Obligate terrestrial breeding frogs also have egg masses that absorb water more quickly than those with flexible oviposition. We also examined eight populations of a single species, Dendropsophus ebraccatus, and document substantial intraspecific variation in terrestrial oviposition; populations in rainy, stable climates lay fewer eggs in water than those in drier areas. However, no differences in egg size were found, supporting the idea that the behavioral component of oviposition evolves before other adaptations associated with obligate terrestrial reproduction. Collectively, these data demonstrate the key role that behavior can have in facilitating major evolutionary transitions.


Assuntos
Anuros , Evolução Biológica , Oviposição , Reprodução , Animais , Oviposição/fisiologia , Feminino , Anuros/fisiologia , Reprodução/fisiologia , Óvulo/fisiologia , Ecossistema
7.
Proc Natl Acad Sci U S A ; 121(11): e2317440121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437532

RESUMO

Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.

8.
Annu Rev Physiol ; 85: 191-215, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36343603

RESUMO

Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.


Assuntos
Mapeamento Encefálico , Tomada de Decisões , Humanos , Tempo de Reação , Imageamento por Ressonância Magnética , Encéfalo
9.
Proc Natl Acad Sci U S A ; 120(9): e2209807120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812210

RESUMO

Since first developed, the conducting materials in wireless communication and electromagnetic interference (EMI) shielding devices have been primarily made of metal-based structures. Here, we present a graphene-assembled film (GAF) that can be used to replace copper in such practical electronics. The GAF-based antennas present strong anticorrosive behavior. The GAF ultra-wideband antenna covers the frequency range of 3.7 GHz to 67 GHz with the bandwidth (BW) of 63.3 GHz, which exceed ~110% than the copper foil-based antenna. The GAF Fifth Generation (5G) antenna array features a wider BW and lower sidelobe level compared with that of copper antennas. EMI shielding effectiveness (SE) of GAF also outperforms copper, reaching up to 127 dB in the frequency range of 2.6 GHz to 0.32 THz, with a SE per unit thickness of 6,966 dB/mm. We also confirm that GAF metamaterials exhibit promising frequency selection characteristics and angular stability as flexible frequency selective surfaces.

10.
Proc Natl Acad Sci U S A ; 120(23): e2300953120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253015

RESUMO

Self-healing is a bioinspired strategy to repair damaged conductors under repetitive wear and tear, thereby largely extending the life span of electronic devices. The self-healing process often demands external triggering conditions as the practical challenges for the widespread applications. Here, a compliant conductor with electrically self-healing capability is introduced by combining ultrahigh sensitivity to minor damages and reliable recovery from ultrahigh tensile deformations. Conductive features are created in a scalable and low-cost fabrication process comprising a copper layer on top of liquid metal microcapsules. The efficient rupture of microcapsules is triggered by structural damages in the copper layer under stress conditions as a result of the strong interfacial interactions. The liquid metal is selectively filled into the damaged site for the instantaneous restoration of the metallic conductivity. The unique healing mechanism is responsive to various structural degradations including microcracks under bending conditions and severe fractures upon large stretching. The compliant conductor demonstrates high conductivity of ∼12,000 S/cm, ultrahigh stretchability of up to 1,200% strain, an ultralow threshold to activate the healing actions, instantaneous electrical recovery in microseconds, and exceptional electromechanical durability. Successful implementations in a light emitting diode (LED) matrix display and a multifunctional electronic patch demonstrate the practical suitability of the electrically self-healing conductor in flexible and stretchable electronics. The developments provide a promising approach to improving the self-healing capability of compliant conductors.

11.
Proc Natl Acad Sci U S A ; 120(40): e2311755120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748078

RESUMO

Soft materials that can produce electrical energy under mechanical stimulus or deform significantly via moderate electrical fields are important for applications ranging from soft robotics to biomedical science. Piezoelectricity, the property that would ostensibly promise such a realization, is notably absent from typical soft matter. Flexoelectricity is an alternative form of electromechanical coupling that universally exists in all dielectrics and can generate electricity under nonuniform deformation such as flexure and conversely, a deformation under inhomogeneous electrical fields. The flexoelectric coupling effect is, however, rather modest for most materials and thus remains a critical bottleneck. In this work, we argue that a significant emergent flexoelectric response can be obtained by leveraging a hierarchical porous structure found in biological materials. We experimentally illustrate our thesis for a natural dry luffa vegetable-based sponge and demonstrate an extraordinarily large mass- and deformability-specific electromechanical response with the highest-density-specific equivalent piezoelectric coefficient known for any material (50 times that of polyvinylidene fluoride and more than 10 times that of lead zirconate titanate). Finally, we demonstrate the application of the fabricated natural sponge as green, biodegradable flexible smart devices in the context of sensing (e.g., for speech, touch pressure) and electrical energy harvesting.

12.
Proc Natl Acad Sci U S A ; 120(34): e2307646120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579150

RESUMO

Solid-solid reactions stand out in rechargeable sulfur-based batteries due to the robust redox couples and high sulfur utilization in theory. However, conventional solid-solid reactions in sulfur cathode always present slow reaction kinetics and huge redox polarization due to the low electronic conductivity of sulfur and the generation of various electrochemical inert intermediates. In view of this, it is crucial to improve the electrochemical activity of sulfur cathode and tailor the redox direction. Guided by thermodynamics analysis, short-chain sulfur molecules (S2-4) are successfully synthesized by space-limited domain principle. Unlike conventional cyclic S8 molecules with complex routes in solid-solid reaction, short-chain sulfur molecules not only shorten the length of the redox chain but also inhibit the formation of irreversible intermediates, which brings excellent redox dynamics and reversibility. As a result, the Cu-S battery built by short-chain sulfur molecules can deliver a high reversible capacity of 3,133 mAh g-1. To put this into practice, quasi-solid-state aqueous flexible battery based on short-chain sulfur molecules is also designed and evaluated, showing superior mechanical flexibility and electrochemical property. It indicates that the introduction of short-chain sulfur molecules in rechargeable battery can promote the development and application of high-performance sulfur-based aqueous energy storage systems.

13.
Trends Biochem Sci ; 46(8): 626-629, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34210544

RESUMO

Recent advances in high-resolution structural studies of protein amyloids have revealed parallel in-register cross-ß-sheets with periodic arrays of closely spaced identical residues. What do these structures tell us about the mechanisms of action of common amyloid-promoting factors, such as heparan sulfate (HS), nucleic acids, polyphosphates, anionic phospholipids, and acidic pH?


Assuntos
Amiloide
14.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38527807

RESUMO

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Assuntos
Encéfalo , Rede Nervosa , Humanos , Masculino , Feminino , Adulto , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Atenção/fisiologia , Adulto Jovem , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Memória de Longo Prazo/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal/fisiologia , Memória de Curto Prazo/fisiologia
15.
Syst Biol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320290

RESUMO

Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analysed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all thirteen major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.

16.
Proc Natl Acad Sci U S A ; 119(34): e2208060119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972962

RESUMO

As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.


Assuntos
Técnicas Biossensoriais , Óxido Nítrico , Osteoartrite , Tecnologia sem Fio , Animais , Técnicas Biossensoriais/métodos , Doença Crônica , Diagnóstico Precoce , Técnicas Eletroquímicas/métodos , Eletrodos , Óxido Nítrico/análise , Osteoartrite/diagnóstico , Coelhos
17.
Proc Natl Acad Sci U S A ; 119(33): e2203287119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939711

RESUMO

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.


Assuntos
Terapia por Estimulação Elétrica , Neuroestimuladores Implantáveis , Nanoestruturas , Semicondutores , Compostos Inorgânicos de Carbono/química , Terapia por Estimulação Elétrica/instrumentação , Membranas Artificiais , Compostos de Silício/química , Dióxido de Silício/química
18.
Nano Lett ; 24(12): 3777-3784, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497654

RESUMO

Gap plasmon (GP) resonance in static surface-enhanced Raman spectroscopy (SERS) structures is generally too narrow and not tunable. Here, we present an adaptive gap-tunable SERS device to selectively enhance and modulate different vibrational modes via active flexible Au nanogaps, with adaptive optical control. The tunability of GP resonance is up to ∼1200 cm-1 by engineering gap width, facilitated by mechanical bending of a polyethylene terephthalate substrate. We confirm that the tuned GP resonance selectively enhances different Raman spectral regions of the molecules. Additionally, we dynamically control the SERS intensity through the wavefront shaping of excitation beams. Furthermore, we demonstrate simulation results, exhibiting the mechanical and optical properties of a one-dimensional flexible nanogap and their advantage in high-speed biomedical sensing. Our work provides a unique approach for observing and controlling the enhanced chemical responses with dynamic tunability.

19.
Nano Lett ; 24(4): 1332-1340, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232321

RESUMO

Printed electronic technology serves as a key component in flexible electronics and wearable devices, yet achieving compatibility with both high resolution and high efficiency remains a significant challenge. Here, we propose a rapid fabrication method of high-resolution nanoparticle microelectronics via self-assembly and transfer printing. The tension gradient-electrostatic attraction composite-induced nanoparticle self-assembly strategy is constructed, which can significantly enhance the self-assembly efficiency, stability, and coverage by leveraging the meniscus Marangoni effect and the electric double-layer effect. The close-packed nanoparticle self-assembly layer can be rapidly formed on microstructure surfaces over a large area. Inspired by ink printing, a transfer printing strategy is further proposed to transform the self-assembly layer into conformal micropatterns. Large-area, high-resolution (2 µm), and ultrathin (1 µm) nanoparticle microelectronics can be stably fabricated, yielding a significant improvement over fluid printing methods. The unique deformability, recoverability, and scalability of nanoparticle microelectronics are revealed, providing promising opportunities for various academic and real applications.

20.
Nano Lett ; 24(4): 1176-1183, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240634

RESUMO

Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA