Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091208

RESUMO

BACKGROUND AND AIMS: Not all plant-pollinator interactions are mutualistic, and in fact, deceptive pollination systems are widespread in nature. The genus Arisaema has a pollination system known as lethal deceptive pollination, in which plants not only attract pollinating insects without providing any rewards, but also trap them until they die. Many Arisaema species are endangered from various disturbances including reduction in forest habitat, modification of the forest understory owing to increasing deer abundance, and plant theft for horticultural cultivation. We aimed to theoretically investigate how lethal deceptive pollination can be maintained from a demographic perspective and how plant and pollinator populations respond to different types of disturbance. METHODS: We developed and analysed a mathematical model to describe the population dynamics of a deceptive plant species and its victim pollinator. Calibrating the model based on empirical data, we assessed the conditions under which plants and pollinators could coexist, while manipulating relevant key parameters. KEY RESULTS: The model exhibited qualitatively distinct behaviours depending on certain parameters. The plant becomes extinct when it has a low capability for vegetative reproduction and slow transition from male to female, and plant-insect co-extinction occurs especially when the plant is highly attractive to male insects. Increasing deer abundance has both positive and negative effects because of removal of other competitive plants and diminishing pollinators, respectively. Theft for horticultural cultivation can readily threaten plants whether male or female plants are frequently collected. The impact of forest habitat reduction may be limited compared to that of other disturbance types. CONCLUSIONS: Our results have emphasised that the demographic vulnerability of lethal deceptive pollination systems would differ qualitatively from that of general mutualistic pollination systems. It is therefore important to consider the demographics of both victim pollinators and deceptive plants to estimate how endangered Arisaema populations respond to various disturbances.

2.
Ann Bot ; 131(2): 275-286, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479901

RESUMO

BACKGROUND AND AIMS: Trap flowers are fascinating cases of adaptation, often linked to oviposition-site mimicry systems. Some trap flowers do not imprison pollinators for a pre-determined period, but rather force them to move through a specific path, manipulating their movements in a way that culminates in pollen transfer, often as they leave through a secondary opening. METHODS: We investigated the previously unknown pollination system of the lady's slipper orchid Phragmipedium vittatum and assessed the function of micro-morphological traits of its trap flowers. KEY RESULTS: Our observations revealed that P. vittatum is pollinated by females of two hoverfly species (Syrphidae). Eggs laid by flies on or near raised black spots on the flowers indicate that the orchid mimics aphids which serve as food for their aphidophagous larvae. Dark, elevated aphid-like spots appear to attract the attention of hoverflies to a slipping zone. This region has downward projecting papillate cells and mucilage secretion that promote slipperiness, causing potential pollinators to fall into the labellum. They then follow a specific upward route towards inner aphid-like spots by holding onto upward oriented hairs that aid their grip. As hoverflies are funnelled by the lateral constriction of the labellum, they pass the stigma, depositing pollen they may be carrying. Later, they squeeze under one of the articulated anthers which places pollen smears onto their upper thorax. Then, they depart through one of the narrow lateral holes by holding onto hairs projecting from the petals. CONCLUSIONS: This study confirms the system of aphid mimicry in Phragmipedium and highlights the sophisticated micro-morphological traits used by trap flowers in pollinator attraction, trapping, guidance and release, thus promoting precise pollen transfer.


Assuntos
Afídeos , Animais , Feminino , Aclimatação , Brasil , Flores , Pólen , Polinização
3.
New Phytol ; 223(4): 1989-2001, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31074029

RESUMO

Deception of floral visitors in pollination systems is widely distributed among flowering plants. In deceptive systems, the flower (or part of it) or inflorescence mimics either a specific or an unspecific model to attract pollinators. A previous study showed that Telipogon peruvianus flowers developed sexual deception for pollination. However, it was unknown which stimuli were playing a role in pollination. Therefore, we aim to throw some light onto these questions using colour and chemical analysis and biotests. Interestingly, using spectral reflectance, we show here that the flowers present high contrast similar to that produced by a female tachinid fly sitting on a daisy inflorescence, which is used as food resource. We also tested the role of chemical signals in pollinator attraction by collecting floral and female extracts for chemical and electrophysiological analyses, and carried out behavioural tests. For biotests, various treatments, including synthetic mixtures of the electrophysiologically active compounds found in common in females and flowers, have demonstrated that T. peruvianus flowers mimic the sexual pheromone of their pollinator's females. Thus, we give evidence that T. peruvianus flowers mimic a model composed of two organisms. Our study contributes to the understanding of the evolution of deceptive pollination.


Assuntos
Orchidaceae/fisiologia , Polinização/fisiologia , Clima Tropical , Animais , Comportamento Animal , Cor , Fenômenos Eletrofisiológicos , Feminino , Flores/anatomia & histologia , Insetos/fisiologia , Masculino , Mimetismo Molecular , Pigmentação , Olfato/fisiologia
4.
New Phytol ; 239(4): 1164-1165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345943
5.
New Phytol ; 217(1): 74-81, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980704

RESUMO

Floral mimicry of nonfloral resources is found across many angiosperm families, with mimicry of varied models including carrion, dung, fungi, insects and fruit. These systems provide excellent models to investigate the role of visual and olfactory cues for the ecology and evolution of plant-animal interactions. Interestingly, floral mimicry of fruit is least documented in the literature, although ripe or rotting fruits play an important role as a food or brood site in many insect groups such as Diptera, Hymenoptera and Coleoptera, and frugivorous vertebrates such as bats and birds. In ecosystems where fruit represents a frequent, reliable resource (e.g. tropical forests), this form of floral mimicry could represent a common mimicry class with specialization possible along multiple axes such as fruit of different species, stages of ripeness and microbial colonization. In this review, we summarize current research on floral mimicry of fruit. We place this review in the context of floral mimicry of a broader spectrum of nonfloral resources, and we discuss conceptual frameworks of mimicry vs generalized food deception or pre-existing sensory bias. Finally, we briefly review the specificity and complexity of fruit-insect ecological interactions, and we summarize important considerations and questions for moving forward in this field.


Assuntos
Mimetismo Biológico , Flores/fisiologia , Magnoliopsida/fisiologia , Polinização , Animais , Evolução Biológica , Sinais (Psicologia) , Ecologia , Frutas/fisiologia , Fungos , Insetos
6.
Phytochemistry ; 223: 114111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688443

RESUMO

Symplocarpus foetidus (L.) Salisb. (eastern skunk cabbage) occurs across a broad geographic range of northeastern North America, blooming in winter between December and March. The inflorescences are well-known for their thermogenic and thermoregulatory metabolic capabilities. The perceptual qualities of their fetid floral aroma have been described widely in the literature, but to date the floral volatile composition remained largely unknown. Here we present a detailed study of the floral scent produced by S. foetidus collected from intact female- and male-stage inflorescences and from dissected floral parts. Our results show a large range of biosynthetically diverse volatiles including nitrogen- and sulfur-containing compounds, monoterpenes, benzenoids, and aliphatic esters and alcohols. We document high inter-individual variation with some organ-specific volatile trends but no clear strong variation based on sexual stage. Multivariate data analysis revealed two distinct chemotypes from our study populations that are not defined by sexual stage or population origin. The chemotype differences may explain the bimodal perceptual descriptions in earlier work which vary between highly unpleasant/fetid and pleasant/apple-like. We discuss the results in ecological contexts including potential for floral mimicry, taking into account existing pollination studies for the species. We also discuss the results in evolutionary contexts, comparing our scent data to published scent data from the close sister species Symplocarpus renifolius. Future work should more closely examine the chemotype occurrence and frequency within these and other populations, and the impact these chemotypes may have on pollinator attraction and reproductive success.


Assuntos
Araceae , Flores , Odorantes , Flores/química , Araceae/química , Odorantes/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/análise , Polinização
7.
Ecol Evol ; 13(1): e9759, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726874

RESUMO

Flowers have many traits to appeal to pollinators, including ultraviolet (UV) absorbing markings, which are well-known for attracting bees at close proximity (e.g., <1 m). While striking UV signals have been thought to attract pollinators also from far away, if these signals impact the plant pollinia removal over distance remains unknown. Here, we report the case of the Australian orchid Diuris brumalis, a nonrewarding species, pollinated by bees via mimicry of the rewarding pea plant Daviesia decurrens. When distant from the pea plant, Diuris was hypothesized to enhance pollinator attraction by exaggeratedly mimicking the floral ultraviolet (UV) reflecting patterns of its model. By experimentally modulating floral UV reflectance with a UV screening solution, we quantified the orchid pollinia removal at a variable distance from the model pea plants. We demonstrate that the deceptive orchid Diuris attracts bee pollinators by emphasizing the visual stimuli, which mimic the floral UV signaling of the rewarding model Daviesia. Moreover, the exaggerated UV reflectance of Diuris flowers impacted pollinators' visitation at an optimal distance from Da. decurrens, and the effect decreased when orchids were too close or too far away from the model. Our findings support the hypothesis that salient UV flower signaling plays a functional role in visual floral mimicry, likely exploiting perceptual gaps in bee neural coding, and mediates the plant pollinia removal at much greater spatial scales than previously expected. The ruse works most effectively at an optimal distance of several meters revealing the importance of salient visual stimuli when mimicry is imperfect.

8.
Plant Biol (Stuttg) ; 23(1): 111-120, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32915486

RESUMO

Holoparasitic plants are interesting heterotrophic angiosperms. However, carrion- or faeces-mimicking is rarely described for such plants. There is no information on the pollination biology of Cynomoriaceae, despite the fact that these plants are rare and vulnerable. This is the first study to reveal pollination in a member of this family, Cynomorium songaricum, a root holoparasite with a distinctive and putrid floral odour. From 2016 to 2018, we studied the floral volatiles, floral visitors and pollinators, behavioural responses of visitors to floral volatiles, breeding system, flowering phenology and floral biology of two wild populations of C. songaricum in Alxa, Inner Mongolia, China. A total of 42 volatiles were identified in inflorescences of C. songaricum. Among these volatiles are compounds known as typical carrion scents, such as p-cresol, indole, dimethyl disulphide and 1-octen-3-ol. C. songaricum is pollinated by various Diptera, such as Musca domestica, M. stabulans (Muscidae), Delia setigera, D. platura (Anthomyiidae), Lucilia sericata, L. caesar (Calliphoridae), Wohlfahrtia indigens, Sarcophaga noverca, S. crassipalpis and Sarcophila meridionalis (Sarcophagidae). The inflorescence scent of C. songaricum attracted these pollinators. The plants significantly benefit from insect pollination, although wind can be a pollen vector in the absence of pollinators. C. songaricum is a cross-pollinated, self-incompatible plant. Our findings suggest that C. songaricum releases malodorous volatiles to attract Diptera to achieve pollination. This new example lays the foundation for further comparative studies in other members of this plant group and contributes to a better understanding of fly-pollinated, carrion mimicking plants.


Assuntos
Cynomorium/química , Cynomorium/fisiologia , Flores/fisiologia , Odorantes , Polinização , Animais , China
9.
Mycologia ; 112(1): 39-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31825746

RESUMO

We report on the discovery and characterization of a novel Fusarium species that produced yellow-orange pseudoflowers on Xyris spp. (yellow-eyed grass; Xyridaceae) growing in the savannas of the Pakaraima Mountains of western Guyana. The petaloid fungal structures produced on infected plants mimic host flowers in gross morphology. Molecular phylogenetic analyses of full-length RPB1 (RNA polymerase largest subunit), RPB2 (RNA polymerase second largest subunit), and TEF1 (elongation factor 1-α) DNA sequences mined from genome sequences resolved the fungus, described herein as F. xyrophilum, sp. nov., as sister to F. pseudocircinatum within the African clade of the F. fujikuroi species complex. Results of a polymerase chain reaction (PCR) assay for mating type idiomorph revealed that single-conidial isolates of F. xyrophilum had only one of the MAT idiomorphs (MAT1-1 or MAT1-2), which suggests that the fungus may have a heterothallic sexual reproductive mode. BLASTn searches of whole-genome sequence of three strains of F. xyrophilum indicated that it has the genetic potential to produce secondary metabolites, including phytohormones, pigments, and mycotoxins. However, a polyketide-derived pigment, 8-O-methylbostrycoidin, was the only metabolite detected in cracked maize kernel cultures. When grown on carnation leaf agar, F. xyrophilum is phenotypically distinct from other described Fusarium species in that it produces aseptate microconidia on erect indeterminate synnemata that are up to 2 mm tall and it does not produce multiseptate macroconidia.


Assuntos
Mimetismo Biológico , Flores , Fusarium/classificação , Poaceae/microbiologia , DNA Fúngico/genética , Proteínas Fúngicas/genética , Fusarium/citologia , Fusarium/genética , Genes Fúngicos Tipo Acasalamento/genética , Genoma Fúngico/genética , Guiana , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos/classificação , Esporos Fúngicos/citologia , Esporos Fúngicos/genética
10.
Anim Behav ; 144: 125-134, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31439964

RESUMO

Imperfect mimicry presents a paradox of incomplete adaptation - intuitively, closer resemblance should improve performance. Receiver psychology can often explain why mimetic signals do not always evolve to match those of their models. Here, we explored the influence of a pervasive and powerful cognitive bias where associative learning depends upon an asymmetric interaction between the cue (stimulus) and consequence (reinforcer), such as in rats, which will associate light and tone with shock, and taste with nausea, but not the converse. Can such biases alter selection for mimicry? We designed an artificial mimicry system where bees foraged on artificial flowers, so that colours could be switched between rewarding or aversive. We found that when the colour blue was paired with a sucrose reward, other cues were ignored, but not when blue was paired with aversive compounds. We also tested the hypothesis that costs of errors affect how receivers sample imperfect mimics. However, costs of errors did not affect bee visits to imperfect mimics in our study. We propose a novel hypothesis for imperfect mimicry, in which the pairing between specific cues and reinforcers allows an imperfect mimic to resemble multiple models simultaneously. Generally, our results emphasize the importance of receiver psychology for the evolution of signal complexity and specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA