Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Sci Food Agric ; 103(9): 4441-4449, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36869599

RESUMO

BACKGROUND: Wheat and wheat flour are important raw materials of staple foods. Medium-gluten wheat is now the dominant wheat in China. In order to expand the application of medium-gluten wheat, radio-frequency (RF) technology was used to improve its quality. Effects of tempering moisture content (TMC) of wheat and RF treatment time on wheat quality were investigated. RESULTS: No evident change in protein content after RF treatment, but a reduction in wet gluten content of the sample with 10-18% TMC and RF treatment for 5 min, was observed. By contrast, protein content increased to 31.0% after RF treatment for 9 min in 14% TMC wheat, achieving the requirement of high-gluten wheat (≥30.0%). Thermodynamic and pasting properties indicated that RF treatment (14% TMC, 5 min) can alter the double-helical structure and pasting viscosities of flour. In addition, the results of textural analysis and sensory evaluation for Chinese steamed bread showed that RF treatment for 5 min with different TMC (10-18%) wheat could deteriorate wheat quality, while the wheat (14% TMC) treated with RF for 9 min had the best quality. CONCLUSION: RF treatment for 9 min can improve wheat quality when the TMC was 14%. The results are beneficial to the application of RF technology in wheat processing and improvement of wheat flour quality. © 2023 Society of Chemical Industry.


Assuntos
Triticum , Glutens/química , Triticum/química , Água/química , Viscosidade , Farinha/análise , Fenômenos Químicos
2.
Plant J ; 102(3): 555-568, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31826330

RESUMO

Triticum urartu (2n = 2x = 14, subgenome Au Au ), a wild diploid wheat progenitor, features broad allelic diversity for a number of traits of agronomic relevance. A thorough characterization of the diversity of T. urartu natural accessions may provide wheat breeders with new alleles potentially contributing to wheat improvement. In this study, we performed an extensive genotypic and phenotypic characterization of a world collection of 299 T. urartu ex situ accessions, developing 441 327 single nucleotide polymorphisms and recording trait values for agronomic and quality traits. The collection was highly diverse, with broad variation in phenology and plant architecture traits. Seed features were also varied, and analyses of flour quality reported 18 distinct patterns of glutenins, and carotenoid concentrations and sedimentation volumes in some cases surpassing those of cultivated materials. The genome-wide molecular markers developed on the collection were used to conduct a genome-wide association study reporting 25 highly significant quantitative trait nucleotides for the traits under examination, only partially overlapping loci already reported in wheat. Our data show that T. urartu may be considered a valuable allele pool to support the improvement of wheat agronomy and quality.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Glutens/genética , Triticum/genética , Alelos , Genótipo , Locos de Características Quantitativas/genética
3.
J Exp Bot ; 72(18): 6247-6259, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34097731

RESUMO

Lipoxygenases (Loxs) are dioxygenases that play an important role in plant growth and defense. Loxs affect flour processing quality in common wheat (Triticum aestivum). We conducted a genome-wide association study (GWAS) that identified 306 significant single-nucleotide polymorphisms (SNPs) related to Lox activity in Chinese wheat accessions. Among them, a novel lipoxygenase-encoding (Lpx) gene, TaLpx-B4, was detected on chromosome 3B in a biparental population. Analysis of mutant wheat lines induced using ethyl methanesulfonate confirmed the role of TaLpx-B4 in modulating Lox activity. A phylogenetic tree of various plant Lpx genes indicated the predominance of the 9-Lpx type in common wheat. Further analysis revealed conserved intron number, exon length, and motif number in the TaLpx gene family. GWAS, linkage mapping, and gene annotation collectively showed that 14 out of 29 annotated TaLpx genes played a critical role in regulating Lox activity in the Chinese wheat accessions. Transgenic wheat grains with knockdown of Lpx family genes by RNAi showed significantly lower Lox activity than the wild type. One TaLpx-RNAi line had significantly reduced starch content and dough stability, and thus possessed relatively superior biscuit quality in soft wheat. Further analysis of the transcriptome, lipid components, and other metabolites revealed that knockdown of TaLpx genes significantly increased biscuit quality via changes in unsaturated fatty acid content as well as in starch, sucrose, and galactose metabolism. Our results provide new insights into the role of the TaLpx gene family that will be beneficial in improving soft wheat flour quality.


Assuntos
Farinha , Triticum , Estudo de Associação Genômica Ampla , Lipoxigenase/genética , Filogenia , Triticum/genética
4.
Breed Sci ; 71(2): 184-192, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34377066

RESUMO

Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: 'Imam', which possessed the Glu-D1d allele responsible for the suitable bread-making; 'Bohaine', which displayed high expression level of SSPs; and 'Condor', which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.

5.
Funct Integr Genomics ; 20(1): 1-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31250230

RESUMO

Although the economic value of wheat flour is determined by the complement of gluten proteins, these proteins have been challenging to study because of the complexity of the major protein groups and the tremendous sequence diversity among wheat cultivars. The completion of a high-quality wheat genome sequence from the reference wheat Chinese Spring recently facilitated the assembly and annotation of a complete set of gluten protein genes from a single cultivar, making it possible to link individual proteins in the flour to specific gene sequences. In a proteomic analysis of total wheat flour protein from Chinese Spring using quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry, gliadins or low-molecular-weight glutenin subunits were identified as the predominant proteins in 72 protein spots. Individual spots were associated with 40 of 56 Chinese Spring gene sequences, including 16 of 26 alpha gliadins, 10 of 11 gamma gliadins, six of seven omega gliadins, one of two delta gliadins, and nine of ten LMW-GS. Most genes that were not associated with protein spots were either expressed at low levels in endosperm or encoded proteins with high similarity to other proteins. A wide range of protein accumulation levels were observed and discrepancies between transcript levels and protein levels were noted. This work together with similar studies using other commercial cultivars should provide new insight into the molecular basis of wheat flour quality and allergenic potential.


Assuntos
Gliadina/genética , Triticum/genética , Eletroforese em Gel Bidimensional , Farinha , Genoma de Planta , Gliadina/análise , Gliadina/química , Gliadina/metabolismo , Poliploidia , Proteômica , Padrões de Referência , Espectrometria de Massas em Tandem , Triticum/metabolismo
6.
Molecules ; 25(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971947

RESUMO

Because high-molecular-weight glutenin subunits (HMW-GS) are important contributors to wheat end-use quality, there is a need for high-throughput identification of HMW-GS in wheat genetic resources and breeding lines. We developed an optimized method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to distinguish individual HMW-GS by considering the effects of the alkylating reagent in protein extraction, solvent components, dissolving volume, and matrix II components. Using the optimized method, 18 of 22 HMW-GS were successfully identified in standard wheat cultivars by differences in molecular weights or by their associations with other tightly linked subunits. Interestingly, 1Bx7 subunits were divided into 1Bx7 group 1 and 1Bx7 group 2 proteins with molecular weights of about 82,400 and 83,000 Da, respectively. Cultivars containing the 1Bx7 group 2 proteins were distinguished from those containing 1Bx7OE using well-known DNA markers. HMW-GS 1Ax2* and 1Bx6 and 1By8 and 1By8*, which are difficult to distinguish due to very similar molecular weights, were easily identified using RP-HPLC. To validate the method, HMW-GS from 38 Korean wheat varieties previously evaluated by SDS-PAGE combined with RP-HPLC were analyzed by MALDI-TOF-MS. The optimized MALDI-TOF-MS method will be a rapid, high-throughput tool for selecting lines containing desirable HMW-GS for breeding efforts.


Assuntos
Glutens/análise , Glutens/química , Subunidades Proteicas/análise , Subunidades Proteicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triticum/química , Peso Molecular
7.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561750

RESUMO

Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS), is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides) accession D97 into the common wheat (Triticum aestivum) cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS) sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.


Assuntos
Alelos , Farinha , Genes de Plantas , Triticum/genética , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Glutens/química , Glutens/genética , Cariotipagem , Peso Molecular , Fases de Leitura Aberta/genética , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Subunidades Proteicas/metabolismo , Triticum/anatomia & histologia
8.
Breed Sci ; 67(4): 398-407, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29085250

RESUMO

Two-dimensional gel electrophoresis (2-DGE) was used as a complement to SDS-PAGE to determine the allelic compositions of LMW-GS in 32 Korean wheat cultivars. Protein patterns generated by 2-DGE from each cultivar were compared to patterns from standard wheat cultivars for each allele. At the Glu-A3 locus, thirteen c, twelve d, three e (null), two g and two new alleles were identified. At the Glu-B3 locus, one b, nineteen d, four h, one i and five ad alleles were identified. At the Glu-D3 locus, twenty-three a, four b, four c and one l alleles were identified. When compared to results obtained previously using SDS-PAGE, there were discrepancies in the allelic designations of 10 of 32 cultivars (31%). While SDS-PAGE is a rapid and relatively simple method for assessing LMW-GS composition, the similar mobilities of the proteins makes it difficult to discriminate certain alleles. 2-DGE is a more complicated technique, but provides a more accurate picture of the complement of the LMW-GS in a given cultivar. In addition to providing essential information for wheat breeders, the 2-DGE reference maps generated in this study will make it possible to study the contributions of individual LMW-GS to flour quality.

9.
Food Technol Biotechnol ; 53(4): 446-453, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27904379

RESUMO

The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

10.
J Food Sci Technol ; 51(12): 4108-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25477689

RESUMO

Wheat flour fractioned by sieving into four different particle size fractions namely finer fractions (<75 and 75-118 µm), coarser fractions (118-150 and >150 µm) were analyzed for their chemical, rheological, bread & parotta making characteristics. The finer fractions had lower ash, higher dry gluten, damaged starch and sodium dodecysulphate (SDS)-sedimentation value than the coarser fractions. The flour from finer fractions gave bread with best sensory and textural attributes. The parottas from finer fractions showed significantly higher sensory scores for colour, texture, layers, mouthfeel and overall quality score than the coarser fractions. In the micrograph of finer flour fractions, higher number of loosened single starch granules than the aggregates of starch and protein matrix were seen as compared to coarser fractions. These studies indicate that the flour from the finer fractions produce higher quality bread, parotta owing to the presence of higher damaged starch content, quantity and quality of protein in these fractions than coarser fractions.

11.
Foods ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38890907

RESUMO

Wheat (Triticum aestivum L.) stands as a significant cereal crop globally, including in Korea, where its consumption reached 35.7 kg per capita in 2023. In the southern regions of Korea, wheat cultivation follows paddy rice, with harvesting typically occurring during the rainy season in mid-June. This timing, coupled with the high humidity and unpredictable rainfall, often leads to pre-harvest sprouting and subsequent deterioration in flour quality. To assess the impact of rain on flour quality, an artificial rain treatment was administered 45 days after heading in an open field greenhouse, followed by flour quality analysis. The color measurement revealed an increase in the L* parameter, indicative of enhanced kernel vitreousness, attributed to endosperm starch degradation via alpha-amylase activation induced by water absorption. Moreover, significant changes were observed in ash content and the gluten index within the wetted group, resulting in decreased dough strength and stability, ultimately leading to a reduction in loaf volume. Consequently, it is recommended that wheat be harvested 4-7 days after reaching the physiological maturity stage to avoid the rainy season and ensure the production of high-quality wheat.

12.
Front Plant Sci ; 14: 1137808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346135

RESUMO

Soft winter wheat has been adapted to the north-central, north-western, and south-central United States over hundreds of years for optimal yield, height, heading date, and pathogen and pest resistance. Environmental factors like weather affect abiotic traits such as pre-harvest sprouting resistance. However, pre-harvest sprouting has rarely been a target for breeding. Owing to changing weather patterns from climate change, pre-harvest sprouting resistance is needed to prevent significant crop losses not only in the United States, but worldwide. Twenty-two traits including age of breeding line as well as agronomic, flour quality, and pre-harvest sprouting traits were studied in a population of 188 lines representing genetic diversity over 200 years of soft winter wheat breeding. Some traits were correlated with one another by principal components analysis and Pearson's correlations. A genome-wide association study using 1,978 markers uncovered a total of 102 regions encompassing 226 quantitative trait nucleotides. Twenty-six regions overlapped multiple traits with common significant markers. Many of these traits were also found to be correlated by Pearson's correlation and principal components analyses. Most pre-harvest sprouting regions were not co-located with agronomic traits and thus useful for crop improvement against climate change without affecting crop performance. Six different genome-wide association statistical models (GLM, MLM, MLMM, FarmCPU, BLINK, and SUPER) were utilized to search for reasonable models to analyze soft winter wheat populations with increased markers and/or breeding lines going forward. Some flour quality and agronomic traits seem to have been selected over time, but not pre-harvest sprouting. It appears possible to select for pre-harvest sprouting resistance without impacting flour quality or the agronomic value of soft winter wheat.

13.
Foods ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38231659

RESUMO

Within the wheat starchy endosperm, the protein content increases biexponentially from the inner to outer endosperm. Here, we studied how this protein gradient is reflected in mill fractions using three cultivars (Claire, Apache, and Akteur) grown without and with N-fertilization (300 kg N ha-1). The increasing protein content in successive break fractions was shown to reflect the protein gradient within the starchy endosperm. The increasing protein content in successive reduction fractions was primarily due to more aleurone contamination and protein-rich material being harder to reduce in particle size. The miller's bran fractions had the highest protein content because of their high sub-aleurone and aleurone content. Additionally, the break fractions were used to deepen our understanding of the protein composition gradient. The gradient in relative gluten content, increasing from inner to outer endosperm, was more pronounced without N-fertilization than with and reached levels up to 87.3%. Regarding the gluten composition gradient, no consistent trends were observed over cultivars when N-fertilization was applied. This could, at least partly, explain why there is no consensus on the gluten composition gradient in the literature. This study aids millers in managing fluctuations in the functionality of specific flour streams, producing specialized flours, and coping with lower-quality wheat.

14.
Foods ; 11(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37430998

RESUMO

The aim of this study was to test the significant effects of inorganic sulfur and cysteine on grain protein and flour quality in wheat and to provide a theoretical basis of wheat cultivation techniques with high yield and quality. In the field experiment, a winter wheat cultivar, Yangmai 16, was used, and five treatments were established, i.e., S0 (no sulfur fertilizer application during the whole wheat growth period), S(B)60 (60 kg ha-1 inorganic sulfur fertilizer was applied as the basal fertilizer), Cys(B)60 (60 kg ha-1 cysteine sulfur fertilizer was applied as the basal fertilizer), S(J)60 (60 kg ha-1 inorganic sulfur fertilizer was applied as the jointing fertilizer), and Cys(J)60 (60 kg ha-1 cysteine sulfur fertilizer was applied as the jointing fertilizer). The fertilizer application at jointing stage showed a better influence than basal fertilizer application on protein quality; for the content of albumin, gliadin, and high molecular weight glutenin (HMW-GS), Cys(J)60 was the best among these treatments. An increase of 7.9%, 24.4%, 43.5%, 22.7% and 36.4% was found in grain yield, glutenin content, glutenin macro-polymer (GMP), low molecular weight glutenin (LMW-GS), and S content under Cys(J)60, in relation to the control, respectively. A similar trend was found in the end-use quality, as exemplified by an increase of 38.6%, 10.9%, 60.5%, and 109.8% in wet gluten content, dry gluten content, sedimentation volume, and bread-specific volume, respectively; a decrease of 69.3% and 69.1% in bread hardness and bread chewiness was found under Cys(J)60. In terms of application period, topdressing at jointing stage is compared with base fertilizer, the sulfur fertilizer application at jointing stage showed larger effects on grain protein and flour quality, from the different types of sulfur fertilizer, the application of cysteine performed better than the use of inorganic sulfur. The Cys(J)60 exhibited the best effects on protein and flour quality. It was suggested that sufficient sulfur application at jointing stage has the potential to enhance the grain protein and flour quality.

15.
J Food Sci ; 87(10): 4329-4347, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36076362

RESUMO

Fried instant noodles have become a popular instant food in recent years, favored by consumers for their unique flavor and taste. Unfortunately, the oil content of instant noodles is generally high, so the rise of fat-related diseases poses a major health issue. From the perspective of the cost of instant noodle manufacturers and the health of consumers, it is of great significance to reduce the oil content of instant noodles. The aim of this review article is to provide an overview of the main factors, such as raw materials and production processes, affecting oil content in instant noodles in order to suggest specific strategies to reduce the oil content in the end product. From the literature reviewed, adding acetylated potato starch/carboxymethyl cellulose, hydroxypropyl methylcellulose, or preharvest-dropped apple powder in the noodle formulation could be a better choice to reduce oil uptake by 5%-20%. Instant noodles with lower oil content can be produced using novel alternative frying technologies, including microwave and vacuum frying. The proper management of the production processes and the implementation of enhancement strategies may result in a reduction of oil content in the end product.


Assuntos
Carboximetilcelulose Sódica , Farinha , Pós , Derivados da Hipromelose , Amido
16.
Foods ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36360012

RESUMO

This study explored the quality of hypoallergenic wheat ('O-free') developed in Korea and optimized the basic ingredients and processing conditions for making 'O-free' bread using response surface methodology. Water and yeast amounts and mixing and fermentation times were selected as factors, and each factor's tested range was set by a central composite design using Design Experts: water 52-60 g, yeast 1.5-4.5 g, mixing time 2.5-5 min, and fermentation time 50-70 min. Bread height, volume, and firmness were analyzed to determine bread quality. Flour quality analysis showed that 'O-free' flour's gluten strength was weak. 'O-free' flour exhibited inferior bread-making performance compared to representative bread flour. Water and yeast amounts and mixing time, except for fermentation time, affected bread quality significantly. The interaction between yeast and fermentation also affected bread quality significantly. The optimized condition for making bread using 'O-free' flour is 60 g of water, 2.6 g of yeast, 2.5 min of mixing time, and 70.0 min of fermentation time. In conclusion, 'O-free' flour with the changed gluten composition showed poor gluten strength and bread-making performance. However, modifying the formulation of the basic ingredients and processing conditions could significantly improve the production of high-quality hypoallergenic bread.

17.
Foods ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35885389

RESUMO

Pulses such as beans, chickpeas, peas, and lentils are typically consumed whole, but pulse flours will increase their versatility and drive consumption. Beans are the most produced pulse crop in the United States, although their flour use is limited. To expand commercial applications, knowledge of pulse flour attributes important to the food industry is needed. This research aimed to understand the food industry's needs and barriers for pulse flour utilization. An online survey invitation was sent via direct email to individuals employed in food companies developing wheat flour products. A survey weblink was distributed by pulse commodity boards to their membership. Survey questions asked food manufacturers about intrinsic factors of pulse flours that were satisfactory or challenging, and extrinsic factors for use such as market demand. Of the 75 complete responses, 21 currently or had previously used pulse flours in products, and 54 were non-users of pulse flours. Ten users indicated that there were challenges with pulse flours while five did not. Two of the most selected challenges of end-product qualities were flavor and texture. Over half of the respondents were unfamiliar with bean flour. Increasing awareness of bean flours and their attributes coupled with market demand for pulse flour-based products may be the most important extrinsic factors to increasing use among food manufacturers rather than supply or cost.

18.
Foods ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954092

RESUMO

An in-depth survey was conducted by collecting information from web sources, supplemented by interviews with experts and/or bakers, to identify all the flat breads (FBs) produced in the nine Mediterranean countries involved in the FlatBreadMine Project (Croatia, Egypt, France, Greece, Italy, Jordan, Lebanon, Malta and Spain), and to have an insight into their technical and cultural features. A database with information on 143 FB types (51 single-layered, 15 double-layered, 66 garnished, 11 fried) was established. Flours were from soft wheat (67.4%), durum wheat (13.7%), corn (8.6%), rye, sorghum, chickpea, and chestnut (together 5.2%). The raising agents were compressed yeast (55.8%), sourdough (16.7%), baking powder (9.0%), but 18.6% of FBs were unleavened. Sixteen old-style baking systems were recorded, classified into baking plates and vertical ovens (tannur and tabun). Artisanal FBs accounted for 82%, while the industrial ones for 7%. Quality schemes (national, European or global) applied to 91 FBs. Fifteen FBs were rare, prepared only for family consumption: changes in lifestyle and increasing urbanization may cause their disappearance. Actions are needed to prevent the reduction of biodiversity related to FBs. Information in the database will be useful for the selection of FBs suitable to promotional activities and technical or nutritional improvement.

19.
Saudi J Biol Sci ; 29(10): 103417, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36072014

RESUMO

Heat stress during the grain-filling period is the main abiotic stress factor limiting grain yield and quality in wheat (Triticum aestivum L.). In this study, 64 wheat genotypes were exposed to heat stress during reproduction caused by delayed sowing in two growing seasons. Grain yield, 1000 grain weight (GW), grain hardness (GH), and grain-quality related traits were investigated. Heat stress caused a significant decrease in GW through reducing starch content (SC) and a non-compensating rise in protein content (PC), and thereby resulted in lower yield. In addition, significant increases in flour water absorption (WA), Zeleny sedimentation volume (ZT), ash content (AC), lipid content (LC), loaf volume (LV), wet gluten content (WG), dry gluten content (DG), gluten index (GI), and amylopectin content (APC) were found following heat stress. In contrast, decreases in grain moisture content (MC) and amylose content (AMC) induced by heat stress were observed. The heat-tolerant genotypes were superior in grain yield, GW, SC, AMC, and MC. While the sensitive genotypes contained higher PC, LV, GI and AMP. A group of wheat genotypes characterized with a higher yield, AMC, GW, and SC as well as lower PC, WA, GH, ZT, and LV; and was found to be the most heat tolerant by principal component analysis. Lighter weight and smaller grains produce a smaller starchy endosperm with lower quality (less amylose) and higher grain protein content in heat stress compared to normal conditions. Heat stress caused by delayed sowing improves some of the baking-quality related traits.

20.
Food Sci Nutr ; 9(9): 4691-4700, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34531983

RESUMO

In this study, differently sized particles of wheat flour (from 52.36 µm to 108.89 µm) were obtained by adjusting the distance between the rolls (0.02, 0.04, 0.06, 0.08, and 0.1 mm) of a heart mill. Results showed that reducing the particle size significantly increased the damaged starch (DS) content. Uniaxial tensile measurement of dough showed that reducing the particle size of wheat flour can effectively increase the maximum tensile resistance, but the extensibility reaches the maximum in samples at medium particle diameter (78 and 66 µm). Additionally, the ratio of dynamic moduli (G″/G') decreased with a reducing particle size. The results of disulfide bond content, gluten microstructure, showed that finer flour granulation can strengthen the gluten network. The steamed bread (SB) making test showed that SB made from wheat flour of a smaller particle size had a significantly smaller specific volume than that made from a larger particle size. The texture profile analysis showed that with a decrease of wheat flour particle size, the hardness, chewiness of SB increased, the resilience decreased, and there was no significant difference in adhesiveness. Overall, the quality of SB made flour of medium particles (78 µm) is better.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA