Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.170
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2313073121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381794

RESUMO

Theories of moral development propose that empathy is transmitted across individuals. However, the mechanisms through which empathy is socially transmitted remain unclear. Here, we combine computational learning models and functional MRI to investigate whether, and if so, how empathic and non-empathic responses observed in others affect the empathy of female observers. The results of three independent studies showed that watching empathic or non-empathic responses generates a learning signal that respectively increases or decreases empathy ratings of the observer. A fourth study revealed that the learning-related transmission of empathy is stronger when observing human rather than computer demonstrators. Finally, we show that the social transmission of empathy alters empathy-related responses in the anterior insula, i.e., the same region that correlated with empathy baseline ratings, as well as its functional connectivity with the temporoparietal junction. Together, our findings provide a computational and neural mechanism for the social transmission of empathy that accounts for changes in individual empathic responses in empathic and non-empathic social environments.


Assuntos
Encéfalo , Empatia , Humanos , Feminino , Encéfalo/fisiologia , Aprendizagem , Reforço Psicológico , Meio Social
2.
Proc Natl Acad Sci U S A ; 121(28): e2321346121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954551

RESUMO

How does the brain process the faces of familiar people? Neuropsychological studies have argued for an area of the temporal pole (TP) linking faces with person identities, but magnetic susceptibility artifacts in this region have hampered its study with fMRI. Using data acquisition and analysis methods optimized to overcome this artifact, we identify a familiar face response in TP, reliably observed in individual brains. This area responds strongly to visual images of familiar faces over unfamiliar faces, objects, and scenes. However, TP did not just respond to images of faces, but also to a variety of high-level social cognitive tasks, including semantic, episodic, and theory of mind tasks. The response profile of TP contrasted with a nearby region of the perirhinal cortex that responded specifically to faces, but not to social cognition tasks. TP was functionally connected with a distributed network in the association cortex associated with social cognition, while PR was functionally connected with face-preferring areas of the ventral visual cortex. This work identifies a missing link in the human face processing system that specifically processes familiar faces, and is well placed to integrate visual information about faces with higher-order conceptual information about other people. The results suggest that separate streams for person and face processing reach anterior temporal areas positioned at the top of the cortical hierarchy.


Assuntos
Imageamento por Ressonância Magnética , Lobo Temporal , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Adulto , Reconhecimento Facial/fisiologia , Mapeamento Encefálico/métodos , Reconhecimento Psicológico/fisiologia , Face/fisiologia , Adulto Jovem , Reconhecimento Visual de Modelos/fisiologia
3.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776372

RESUMO

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Assuntos
Imageamento por Ressonância Magnética , Saimiri , Medula Espinal , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Medula Espinal/fisiologia , Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Feminino
4.
Proc Natl Acad Sci U S A ; 121(16): e2307982121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593084

RESUMO

A major aspiration of investors is to better forecast stock performance. Interestingly, emerging "neuroforecasting" research suggests that brain activity associated with anticipatory reward relates to market behavior and population-wide preferences, including stock price dynamics. In this study, we extend these findings to professional investors processing comprehensive real-world information on stock investment options while making predictions of long-term stock performance. Using functional MRI, we sampled investors' neural responses to investment cases and assessed whether these responses relate to future performance on the stock market. We found that our sample of investors could not successfully predict future market performance of the investment cases, confirming that stated preferences do not predict the market. Stock metrics of the investment cases were not predictive of future stock performance either. However, as investors processed case information, nucleus accumbens (NAcc) activity was higher for investment cases that ended up overperforming in the market. These findings remained robust, even when controlling for stock metrics and investors' predictions made in the scanner. Cross-validated prediction analysis indicated that NAcc activity could significantly predict future stock performance out-of-sample above chance. Our findings resonate with recent neuroforecasting studies and suggest that brain activity of professional investors may help in forecasting future stock performance.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Núcleo Accumbens , Humanos , Previsões , Investimentos em Saúde
5.
Proc Natl Acad Sci U S A ; 121(12): e2309232121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466844

RESUMO

Sociality is a defining feature of the human experience: We rely on others to ensure survival and cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we quickly learn about our social world to optimally navigate it? We tested whether portions of the brain's default network engage "by default" to quickly prioritize social learning during the memory consolidation process. To test this possibility, participants underwent functional MRI (fMRI) while viewing scenes from the documentary film, Samsara. This film shows footage of real people and places from around the world. We normed the footage to select scenes that differed along the dimension of sociality, while matched on valence, arousal, interestingness, and familiarity. During fMRI, participants watched the "social" and "nonsocial" scenes, completed a rest scan, and a surprise recognition memory test. Participants showed superior social (vs. nonsocial) memory performance, and the social memory advantage was associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex (DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social pattern reinstatement was greatest and predicted subsequent social memory performance most strongly, consistent with the "prioritization" account. Results simultaneously update 1) theories of memory consolidation, which have not addressed how social information may be prioritized in the learning process, and 2) understanding of default network function, which remains to be fully characterized. More broadly, the results underscore the inherent human drive to understand our vastly social world.


Assuntos
Mapeamento Encefálico , Aprendizado Social , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Cognição , Descanso , Imageamento por Ressonância Magnética/métodos
6.
Proc Natl Acad Sci U S A ; 121(12): e2315758121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489383

RESUMO

Grid cells in the entorhinal cortex (EC) encode an individual's location in space, integrating both environmental and multisensory bodily cues. Notably, body-derived signals are also primary signals for the sense of self. While studies have demonstrated that continuous application of visuo-tactile bodily stimuli can induce perceptual shifts in self-location, it remains unexplored whether these illusory changes suffice to trigger grid cell-like representation (GCLR) within the EC, and how this compares to GCLR during conventional virtual navigation. To address this, we systematically induced illusory drifts in self-location toward controlled directions using visuo-tactile bodily stimulation, while maintaining the subjects' visual viewpoint fixed (absent conventional virtual navigation). Subsequently, we evaluated the corresponding GCLR in the EC through functional MRI analysis. Our results reveal that illusory changes in perceived self-location (independent of changes in environmental navigation cues) can indeed evoke entorhinal GCLR, correlating in strength with the magnitude of perceived self-location, and characterized by similar grid orientation as during conventional virtual navigation in the same virtual room. These data demonstrate that the same grid-like representation is recruited when navigating based on environmental, mainly visual cues, or when experiencing illusory forward drifts in self-location, driven by perceptual multisensory bodily cues.


Assuntos
Células de Grade , Ilusões , Navegação Espacial , Humanos , Córtex Entorrinal/fisiologia , Células de Grade/fisiologia , Estado de Consciência , Ilusões/fisiologia , Tato , Navegação Espacial/fisiologia
7.
Proc Natl Acad Sci U S A ; 121(11): e2310766121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442171

RESUMO

The neural correlates of sentence production are typically studied using task paradigms that differ considerably from the experience of speaking outside of an experimental setting. In this fMRI study, we aimed to gain a better understanding of syntactic processing in spontaneous production versus naturalistic comprehension in three regions of interest (BA44, BA45, and left posterior middle temporal gyrus). A group of participants (n = 16) was asked to speak about the events of an episode of a TV series in the scanner. Another group of participants (n = 36) listened to the spoken recall of a participant from the first group. To model syntactic processing, we extracted word-by-word metrics of phrase-structure building with a top-down and a bottom-up parser that make different hypotheses about the timing of structure building. While the top-down parser anticipates syntactic structure, sometimes before it is obvious to the listener, the bottom-up parser builds syntactic structure in an integratory way after all of the evidence has been presented. In comprehension, neural activity was found to be better modeled by the bottom-up parser, while in production, it was better modeled by the top-down parser. We additionally modeled structure building in production with two strategies that were developed here to make different predictions about the incrementality of structure building during speaking. We found evidence for highly incremental and anticipatory structure building in production, which was confirmed by a converging analysis of the pausing patterns in speech. Overall, this study shows the feasibility of studying the neural dynamics of spontaneous language production.


Assuntos
Benchmarking , Rememoração Mental , Humanos , Idioma , Software , Fala
8.
Proc Natl Acad Sci U S A ; 121(27): e2306029121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913894

RESUMO

Echolocating bats are among the most social and vocal of all mammals. These animals are ideal subjects for functional MRI (fMRI) studies of auditory social communication given their relatively hypertrophic limbic and auditory neural structures and their reduced ability to hear MRI gradient noise. Yet, no resting-state networks relevant to social cognition (e.g., default mode-like networks or DMLNs) have been identified in bats since there are few, if any, fMRI studies in the chiropteran order. Here, we acquired fMRI data at 7 Tesla from nine lightly anesthetized pale spear-nosed bats (Phyllostomus discolor). We applied independent components analysis (ICA) to reveal resting-state networks and measured neural activity elicited by noise ripples (on: 10 ms; off: 10 ms) that span this species' ultrasonic hearing range (20 to 130 kHz). Resting-state networks pervaded auditory, parietal, and occipital cortices, along with the hippocampus, cerebellum, basal ganglia, and auditory brainstem. Two midline networks formed an apparent DMLN. Additionally, we found four predominantly auditory/parietal cortical networks, of which two were left-lateralized and two right-lateralized. Regions within four auditory/parietal cortical networks are known to respond to social calls. Along with the auditory brainstem, regions within these four cortical networks responded to ultrasonic noise ripples. Iterative analyses revealed consistent, significant functional connectivity between the left, but not right, auditory/parietal cortical networks and DMLN nodes, especially the anterior-most cingulate cortex. Thus, a resting-state network implicated in social cognition displays more distributed functional connectivity across left, relative to right, hemispheric cortical substrates of audition and communication in this highly social and vocal species.


Assuntos
Córtex Auditivo , Quirópteros , Ecolocação , Imageamento por Ressonância Magnética , Animais , Quirópteros/fisiologia , Córtex Auditivo/fisiologia , Córtex Auditivo/diagnóstico por imagem , Ecolocação/fisiologia , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Masculino , Feminino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
9.
Proc Natl Acad Sci U S A ; 121(25): e2405588121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861607

RESUMO

Many animals can extract useful information from the vocalizations of other species. Neuroimaging studies have evidenced areas sensitive to conspecific vocalizations in the cerebral cortex of primates, but how these areas process heterospecific vocalizations remains unclear. Using fMRI-guided electrophysiology, we recorded the spiking activity of individual neurons in the anterior temporal voice patches of two macaques while they listened to complex sounds including vocalizations from several species. In addition to cells selective for conspecific macaque vocalizations, we identified an unsuspected subpopulation of neurons with strong selectivity for human voice, not merely explained by spectral or temporal structure of the sounds. The auditory representational geometry implemented by these neurons was strongly related to that measured in the human voice areas with neuroimaging and only weakly to low-level acoustical structure. These findings provide new insights into the neural mechanisms involved in auditory expertise and the evolution of communication systems in primates.


Assuntos
Percepção Auditiva , Imageamento por Ressonância Magnética , Neurônios , Vocalização Animal , Voz , Animais , Humanos , Neurônios/fisiologia , Voz/fisiologia , Imageamento por Ressonância Magnética/métodos , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Masculino , Macaca mulatta , Encéfalo/fisiologia , Estimulação Acústica , Mapeamento Encefálico/métodos
10.
Proc Natl Acad Sci U S A ; 121(32): e2320251121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39078671

RESUMO

The primary visual cortex (V1) in blindness is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions specific to task demands. This would suggest that reorganized V1 assumes a role like multiple-demand system regions. Alternatively, varying patterns of plasticity in blind V1 may be attributed to individual factors, with different blind individuals recruiting V1 preferentially for different functions. In support of this, we recently showed that V1 functional connectivity (FC) varies greatly across blind individuals. But do these represent stable individual patterns of plasticity, or are they driven more by instantaneous changes, like a multiple-demand system now inhabiting V1? Here, we tested whether individual FC patterns from the V1 of blind individuals are stable over time. We show that over two years, FC from the V1 is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in V1 connectivity, this indicates that there may be a consistent role for V1 in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.


Assuntos
Cegueira , Plasticidade Neuronal , Humanos , Cegueira/fisiopatologia , Plasticidade Neuronal/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Córtex Visual Primário/fisiologia , Estudos Longitudinais , Córtex Visual/fisiopatologia , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Mapeamento Encefálico/métodos
11.
Proc Natl Acad Sci U S A ; 121(1): e2306295121, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150498

RESUMO

Focusing on the upside of negative events often promotes resilience. Yet, the underlying mechanisms that allow some people to spontaneously see the good in the bad remain unclear. The broaden-and-build theory of positive emotion has long suggested that positive affect, including positivity in the face of negative events, is linked to idiosyncratic thought patterns (i.e., atypical cognitive responses). Yet, evidence in support of this view has been limited, in part, due to difficulty in measuring idiosyncratic cognitive processes as they unfold. To overcome this barrier, we applied Inter-Subject Representational Similarity Analysis to test whether and how idiosyncratic neural responding supports positive reactions to negative experience. We found that idiosyncratic functional connectivity patterns in the brain's default network while resting after a negative experience predicts more positive descriptions of the event. This effect persisted when controlling for connectivity 1) before and during the negative experience, 2) before, during, and after a neutral experience, and 3) between other relevant brain regions (i.e., the limbic system). The relationship between idiosyncratic default network responding and positive affect was largely driven by functional connectivity patterns between the ventromedial prefrontal cortex and the rest of the default network and occurred relatively quickly during rest. We identified post-encoding rest as a key moment and the default network as a key brain system in which idiosyncratic responses correspond with seeing the good in the bad.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Vias Neurais/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Pré-Frontal
12.
Proc Natl Acad Sci U S A ; 121(18): e2314224121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648482

RESUMO

Making healthy dietary choices is essential for keeping weight within a normal range. Yet many people struggle with dietary self-control despite good intentions. What distinguishes neural processing in those who succeed or fail to implement healthy eating goals? Does this vary by weight status? To examine these questions, we utilized an analytical framework of gradients that characterize systematic spatial patterns of large-scale neural activity, which have the advantage of considering the entire suite of processes subserving self-control and potential regulatory tactics at the whole-brain level. Using an established laboratory food task capturing brain responses in natural and regulatory conditions (N = 123), we demonstrate that regulatory changes of dietary brain states in the gradient space predict individual differences in dietary success. Better regulators required smaller shifts in brain states to achieve larger goal-consistent changes in dietary behaviors, pointing toward efficient network organization. This pattern was most pronounced in individuals with lower weight status (low-BMI, body mass index) but absent in high-BMI individuals. Consistent with prior work, regulatory goals increased activity in frontoparietal brain circuits. However, this shift in brain states alone did not predict variance in dietary success. Instead, regulatory success emerged from combined changes along multiple gradients, showcasing the interplay of different large-scale brain networks subserving dietary control and possible regulatory strategies. Our results provide insights into how the brain might solve the problem of dietary control: Dietary success may be easier for people who adopt modes of large-scale brain activation that do not require significant reconfigurations across contexts and goals.


Assuntos
Índice de Massa Corporal , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Comportamento Alimentar/fisiologia , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Autocontrole , Córtex Cerebral/fisiologia , Dieta
13.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527810

RESUMO

Episodic memory retrieval is associated with the holistic neocortical reinstatement of all event information, an effect driven by hippocampal pattern completion. However, whether holistic reinstatement occurs, and whether hippocampal pattern completion continues to drive reinstatement, after a period of consolidation is unclear. Theories of systems consolidation predict either a time-variant or time-invariant role of the hippocampus in the holistic retrieval of episodic events. Here, we assessed whether episodic events continue to be reinstated holistically and whether hippocampal pattern completion continues to facilitate holistic reinstatement following a period of consolidation. Female and male human participants learned "events" that comprised multiple overlapping pairs of event elements (e.g., person-location, object-location, location-person). Importantly, encoding occurred either immediately before or 24 h before retrieval. Using fMRI during the retrieval of events, we show evidence for holistic reinstatement, as well as a correlation between reinstatement and hippocampal pattern completion, regardless of whether retrieval occurred immediately or 24 h after encoding. Thus, hippocampal pattern completion continues to contribute to holistic reinstatement after a delay. However, our results also revealed that some holistic reinstatement can occur without evidence for a corresponding signature of hippocampal pattern completion after a delay (but not immediately after encoding). We therefore show that hippocampal pattern completion, in addition to a nonhippocampal process, has a role in holistic reinstatement following a period of consolidation. Our results point to a consolidation process where the hippocampus and neocortex may work in an additive, rather than compensatory, manner to support episodic memory retrieval.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Memória Episódica , Rememoração Mental , Humanos , Masculino , Feminino , Hipocampo/fisiologia , Hipocampo/diagnóstico por imagem , Adulto Jovem , Rememoração Mental/fisiologia , Adulto , Fatores de Tempo , Adolescente , Consolidação da Memória/fisiologia
14.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38658167

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects millions of seniors in the United States. Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to study neurophysiology in AD and its prodromal condition, mild cognitive impairment (MCI). The intrinsic neural timescale (INT), which can be estimated through the magnitude of the autocorrelation of neural signals from rs-fMRI, is thought to quantify the duration that neural information is stored in a local circuit. Such heterogeneity of the timescales forms a basis of the brain functional hierarchy and captures an aspect of circuit dynamics relevant to excitation/inhibition balance, which is broadly relevant for cognitive functions. Given that, we applied rs-fMRI to test whether distinct changes of INT at different hierarchies are present in people with MCI, those progressing to AD (called Converter), and AD patients of both sexes. Linear mixed-effect model was implemented to detect altered hierarchical gradients across populations followed by pairwise comparisons to identify regional differences. High similarities between AD and Converter were observed. Specifically, the inferior temporal, caudate, and pallidum areas exhibit significant alterations in both AD and Converter. Distinct INT-related pathological changes in MCI and AD were found. For AD/Converter, neural information is stored for a longer time in lower hierarchical areas, while higher levels of hierarchy seem to be preferentially impaired in MCI leading to a less pronounced hierarchical gradient. These results inform that the INT holds great potential as an additional measure for AD prediction, even a stable biomarker for clinical diagnosis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Imageamento por Ressonância Magnética , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Progressão da Doença , Mapeamento Encefálico/métodos
15.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38719449

RESUMO

Decreased neuronal specificity of the brain in response to cognitive demands (i.e., neural dedifferentiation) has been implicated in age-related cognitive decline. Investigations into functional connectivity analogs of these processes have focused primarily on measuring segregation of nonoverlapping networks at rest. Here, we used an edge-centric network approach to derive entropy, a measure of specialization, from spatially overlapping communities during cognitive task fMRI. Using Human Connectome Project Lifespan data (713 participants, 36-100 years old, 55.7% female), we characterized a pattern of nodal despecialization differentially affecting the medial temporal lobe and limbic, visual, and subcortical systems. At the whole-brain level, global entropy moderated declines in fluid cognition across the lifespan and uniquely covaried with age when controlling for the network segregation metric modularity. Importantly, relationships between both metrics (entropy and modularity) and fluid cognition were age dependent, although entropy's relationship with cognition was specific to older adults. These results suggest entropy is a potentially important metric for examining how neurological processes in aging affect functional specialization at the nodal, network, and whole-brain level.


Assuntos
Envelhecimento , Encéfalo , Cognição , Conectoma , Entropia , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Adulto , Envelhecimento/fisiologia , Envelhecimento/psicologia , Cognição/fisiologia , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
16.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38331583

RESUMO

Capacity limitations in visual tasks can be observed when the number of task-related objects increases. An influential idea is that such capacity limitations are determined by competition at the neural level: two objects that are encoded by shared neural populations interfere more in behavior (e.g., visual search) than two objects encoded by separate neural populations. However, the neural representational similarity of objects varies across brain regions and across time, raising the questions of where and when competition determines task performance. Furthermore, it is unclear whether the association between neural representational similarity and task performance is common or unique across tasks. Here, we used neural representational similarity derived from fMRI, MEG, and a deep neural network (DNN) to predict performance on two visual search tasks involving the same objects and requiring the same responses but differing in instructions: cued visual search and oddball visual search. Separate groups of human participants (both sexes) viewed the individual objects in neuroimaging experiments to establish the neural representational similarity between those objects. Results showed that performance on both search tasks could be predicted by neural representational similarity throughout the visual system (fMRI), from 80 ms after onset (MEG), and in all DNN layers. Stepwise regression analysis, however, revealed task-specific associations, with unique variability in oddball search performance predicted by early/posterior neural similarity and unique variability in cued search task performance predicted by late/anterior neural similarity. These results reveal that capacity limitations in superficially similar visual search tasks may reflect competition at different stages of visual processing.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Percepção Visual/fisiologia , Sinais (Psicologia) , Mapeamento Encefálico , Redes Neurais de Computação , Reconhecimento Visual de Modelos/fisiologia
17.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316565

RESUMO

Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have "unfurled" traditional FC matrices in "edge cofluctuation time series" which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest-based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.


Assuntos
Atenção , Encéfalo , Masculino , Feminino , Adulto Jovem , Humanos , Modelos Lineares , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Atenção/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
18.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38123361

RESUMO

When we intensively train a timing skill, such as learning to play the piano, we not only produce brain changes associated with task-specific learning but also improve our performance in other temporal behaviors that depend on these tuned neural resources. Since the neural basis of time learning and generalization is still unknown, we measured the changes in neural activity associated with the transfer of learning from perceptual to motor timing in a large sample of subjects (n = 65; 39 women). We found that intense training in an interval discrimination task increased the acuity of time perception in a group of subjects that also exhibited learning transfer, expressed as a reduction in inter-tap interval variability during an internally driven periodic motor task. In addition, we found subjects with no learning and/or generalization effects. Notably, functional imaging showed an increase in pre-supplementary motor area and caudate-putamen activity between the post- and pre-training sessions of the tapping task. This increase was specific to the subjects that generalized their timing acuity from the perceptual to the motor context. These results emphasize the central role of the cortico-basal ganglia circuit in the generalization of timing abilities between tasks.


Assuntos
Córtex Motor , Humanos , Feminino , Transferência de Experiência , Imageamento por Ressonância Magnética/métodos , Encéfalo , Gânglios da Base , Destreza Motora
19.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290847

RESUMO

Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.


Assuntos
Mapeamento Encefálico , Encéfalo , Feminino , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sensação
20.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38388426

RESUMO

Real-world listening settings often consist of multiple concurrent sound streams. To limit perceptual interference during selective listening, the auditory system segregates and filters the relevant sensory input. Previous work provided evidence that the auditory cortex is critically involved in this process and selectively gates attended input toward subsequent processing stages. We studied at which level of auditory cortex processing this filtering of attended information occurs using functional magnetic resonance imaging (fMRI) and a naturalistic selective listening task. Forty-five human listeners (of either sex) attended to one of two continuous speech streams, presented either concurrently or in isolation. Functional data were analyzed using an inter-subject analysis to assess stimulus-specific components of ongoing auditory cortex activity. Our results suggest that stimulus-related activity in the primary auditory cortex and the adjacent planum temporale are hardly affected by attention, whereas brain responses at higher stages of the auditory cortex processing hierarchy become progressively more selective for the attended input. Consistent with these findings, a complementary analysis of stimulus-driven functional connectivity further demonstrated that information on the to-be-ignored speech stream is shared between the primary auditory cortex and the planum temporale but largely fails to reach higher processing stages. Our findings suggest that the neural processing of ignored speech cannot be effectively suppressed at the level of early cortical processing of acoustic features but is gradually attenuated once the competing speech streams are fully segregated.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal , Imageamento por Ressonância Magnética , Atenção/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA