Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 78, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243199

RESUMO

BACKGROUND: Local adaptation is a key evolutionary process that enhances the growth of plants in their native habitat compared to non-native habitats, resulting in patterns of adaptive genetic variation across the entire geographic range of the species. The study of population adaptation to local environments and predicting their response to future climate change is important because of climate change. RESULTS: Here, we explored the genetic diversity of candidate genes associated with bud burst in pedunculate oak individuals sampled from 6 populations in Poland. Single nucleotide polymorphism (SNP) diversity was assessed in 720 candidate genes using the sequence capture technique, yielding 18,799 SNPs. Using landscape genomic approaches, we identified 8 FST outliers and 781 unique SNPs in 389 genes associated with geography, climate, and phenotypic variables (individual/family spring and autumn phenology, family diameter at breast height (DBH), height, and survival) that are potentially involved in local adaptation. Then, using a nonlinear multivariate model, Gradient Forests, we identified vulnerable areas of the pedunculate oak distribution in Poland that are at risk from climate change. CONCLUSIONS: The model revealed that pedunculate oak populations in the eastern part of the analyzed geographical region are the most sensitive to climate change. Our results might offer an initial evaluation of a potential management strategy for preserving the genetic diversity of pedunculate oak.


Assuntos
Quercus , Humanos , Quercus/genética , Evolução Biológica , Genômica , Florestas , Polônia , Adaptação Fisiológica/genética
2.
BMC Genomics ; 23(1): 435, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35692040

RESUMO

BACKGROUND: Needle rust caused by the fungus Chrysomyxa rhododendri causes significant growth decline and increased mortality of young Norway spruce trees in subalpine forests. Extremely rare trees with enhanced resistance represent promising candidates for practice-oriented reproduction approaches. They also enable the investigation of tree molecular defence and resistance mechanisms against this fungal disease. Here, we combined RNA-Seq, RT-qPCR and secondary metabolite analyses during a period of 38 days following natural infection to investigate differences in constitutive and infection-induced defence between the resistant genotype PRA-R and three susceptible genotypes. RESULTS: Gene expression and secondary metabolites significantly differed among genotypes from day 7 on and revealed already known, but also novel candidate genes involved in spruce molecular defence against this pathogen. Several key genes related to (here and previously identified) spruce defence pathways to needle rust were differentially expressed in PRA-R compared to susceptible genotypes, both constitutively (in non-symptomatic needles) and infection-induced (in symptomatic needles). These genes encoded both new and well-known antifungal proteins such as endochitinases and chitinases. Specific genetic characteristics concurred with varying phenolic, terpene, and hormone needle contents in the resistant genotype, among them higher accumulation of several flavonoids (mainly kaempferol and taxifolin), stilbenes, geranyl acetone, α-ionone, abscisic acid and salicylic acid. CONCLUSIONS: Combined transcriptional and metabolic profiling of the Norway spruce defence response to infection by C. rhododendri in adult trees under subalpine conditions confirmed the results previously gained on artificially infected young clones in the greenhouse, both regarding timing and development of infection, and providing new insights into genes and metabolic pathways involved. The comparison of genotypes with different degrees of susceptibility proved that several of the identified key genes are differently regulated in PRA-R, and that the resistant genotype combines a strong constitutive defence with an induced response in infected symptomatic needles following fungal invasion. Genetic and metabolic differences between the resistant and susceptible genotypes indicated a more effective hypersensitive response (HR) in needles of PRA-R that prevents penetration and spread of the rust fungus and leads to a lower proportion of symptomatic needles as well as reduced symptom development on the few affected needles.


Assuntos
Picea , Perfilação da Expressão Gênica , Imunidade Inata , Picea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Árvores/genética , Bexiga Urinária
3.
BMC Genomics ; 22(1): 583, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332553

RESUMO

BACKGROUND: Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees. European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about the molecular basis of climate change-relevant traits like bud burst. RESULTS: We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods to find loci significantly associated with geographic variables, climatic variables (expressed as principal components), or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201 candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring phenology. However, different genotype-environment associations were identified within Southeastern Europe as compared to the entire geographic range of European beech. CONCLUSIONS: Environmental conditions play important roles as drivers of genetic diversity of phenology-related genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial scales.


Assuntos
Fagus , Europa (Continente) , Fagus/genética , Genômica , Humanos , Seleção Genética , Árvores/genética
4.
Mol Ecol ; 30(10): 2248-2261, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740830

RESUMO

Understanding local adaptation is critical for conservation management under rapidly changing environmental conditions. Local adaptation inferred from genotype-environment associations may show different genomic patterns depending on the spatial scale of sampling, due to differences in the slope of environmental gradients and the level of gene flow. We compared signatures of local adaptation across the genome of mountain ash (Eucalyptus regnans) at two spatial scales: A species-wide data set and a topographically-complex subregional data set. We genotyped 367 individual trees at over 3700 single-nucleotide polymorphisms (SNPs), quantified patterns of spatial genetic structure among populations, and used two analytical methods to identify loci associated with at least one of three environmental variables at each spatial scale. Together, the analyses identified 549 potentially adaptive SNPs at the subregion scale, and 435 SNPs at the range-wide scale. A total of 39 genic or near-genic SNPs, associated with 28 genes, were identified at both spatial scales, although no SNP was identified by both methods at both scales. We observed that nongenic regions had significantly higher homozygote excess than genic regions, possibly due to selective elimination of inbred genotypes during stand development. Our results suggest that strong environmental selection occurs in mountain ash, and that the identification of putatively adaptive loci can differ substantially depending on the spatial scale of analyses. We also highlight the importance of multiple adaptive genetic architectures for understanding patterns of local adaptation across large heterogenous landscapes, with comparison of putatively adaptive loci among spatial scales providing crucial insights into the process of adaptation.


Assuntos
Seleção Genética , Árvores , Aclimatação , Adaptação Fisiológica/genética , Genética Populacional , Genótipo , Polimorfismo de Nucleotídeo Único/genética
5.
Mol Ecol ; 30(20): 5029-5047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34383353

RESUMO

High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.


Assuntos
Fagus , Adaptação Fisiológica , Mudança Climática , Fagus/genética , Variação Genética , Temperatura , Árvores
6.
Mol Ecol ; 30(20): 5247-5265, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365696

RESUMO

Variation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations' resilience and adaptive potential. The spatial distribution of genetic diversity within populations, referred to as fine-scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.) population pairs (sites), growing at high and low elevations, representative of the main genetic lineages of the species. A total of 1,368 adult trees and 540 seedlings were genotyped using 137 and 116 single nucleotide polymorphisms (SNPs), respectively. Sites revealed a clear east-west isolation-by-distance pattern consistent with the post-glacial colonization history of the species. Genetic differentiation among sites (FCT = 0.148) was an order of magnitude greater than between elevations within sites (FSC = 0.031), nevertheless high elevation populations consistently exhibited a stronger FSGS. Structural equation modelling revealed that elevation and, to a lesser extent, post-glacial colonization history, but not climatic and habitat variables, were the best predictors of FSGS across populations. These results suggest that high elevation habitats have been colonized more recently across the species range. Additionally, paternity analysis revealed a high reproductive skew among adults and a stronger FSGS in seedlings than in adults, suggesting that FSGS may conserve the signature of demographic changes for several generations. Our results emphasize that spatial patterns of genetic diversity within populations provide information about demographic history complementary to non-spatial statistics, and could be used for genetic diversity monitoring, especially in forest trees.


Assuntos
Abies , Abies/genética , Ecossistema , Florestas , Estruturas Genéticas , Variação Genética , Árvores/genética
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638922

RESUMO

Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.


Assuntos
Florestas , Edição de Genes/métodos , Genoma de Planta/genética , Genômica/métodos , Melhoramento Vegetal/métodos , Seleção Genética , Árvores/genética , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla/métodos , Genótipo
8.
J Cell Mol Med ; 24(2): 1837-1847, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808612

RESUMO

Suboptimal health status (SHS), a physical state between health and disease, is a subclinical and reversible stage of chronic disease. Previous studies have shown alterations in the intestinal microbiota in patients with some chronic diseases. This study aimed to investigate the association between SHS and intestinal microbiota in a case-control study with 50 SHS individuals and 50 matched healthy controls. Intestinal microbiota was analysed by MiSeq 250PE. Alpha diversity of intestinal microbiota in SHS individuals was higher compared with that of healthy controls (Simpson index, W = 2238, P = .048). Beta diversity was different between SHS and healthy controls (P = .018). At the phylum level, the relative abundance of Verrucomicrobia was higher in the SHS group than that in the controls (W = 2201, P = .049). Compared with that of the control group, nine genera were significantly higher and five genera were lower in abundance in the SHS group (all P < .05). The intestinal microbiota, analysed by a random forest model, was able to distinguish individuals with SHS from the controls, with an area under the curve of 0.79 (95% confidence interval: 0.77-0.81). We demonstrated that the alteration of intestinal microbiota occurs with SHS, an early stage of disease, which might shed light on the importance of intestinal microbiota in the primary prevention of noncommunicable chronic diseases.


Assuntos
Povo Asiático , Microbioma Gastrointestinal , Nível de Saúde , Adolescente , Algoritmos , Biodiversidade , Estudos de Casos e Controles , Análise Discriminante , Fezes/microbiologia , Feminino , Humanos , Masculino , Filogenia , Análise de Componente Principal , Curva ROC , Adulto Jovem
9.
BMC Genomics ; 21(1): 336, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357832

RESUMO

BACKGROUND: Norway spruce trees in subalpine forests frequently face infections by the needle rust fungus Chrysomyxa rhododendri, which causes significant growth decline and increased mortality of young trees. Yet, it is unknown whether trees actively respond to fungal attack by activating molecular defence responses and/or respective gene expression. RESULTS: Here, we report results from an infection experiment, in which the transcriptomes (via RNA-Seq analysis) and phenolic profiles (via UHPLC-MS) of control and infected trees were compared over a period of 39 days. Gene expression between infected and uninfected ramets significantly differed after 21 days of infection and revealed already known, but also novel candidate genes involved in spruce molecular defence against pathogens. CONCLUSIONS: Combined RNA-Seq and biochemical data suggest that Norway spruce response to infection by C. rhododendri is restricted locally and primarily activated between 9 and 21 days after infestation, involving a potential isolation of the fungus by a hypersensitive response (HR) associated with an activation of phenolic pathways. Identified key regulatory genes represent a solid basis for further specific analyses in spruce varieties with varying susceptibility, to better characterise resistant clones and to elucidate the resistance mechanism.


Assuntos
Basidiomycota/fisiologia , Picea/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genoma de Planta/genética , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Fenóis/química , Fenóis/metabolismo , Picea/genética , Picea/metabolismo , Doenças das Plantas/genética , RNA-Seq , Metabolismo Secundário , Transdução de Sinais , Transcriptoma
10.
New Phytol ; 225(4): 1516-1530, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31120133

RESUMO

Brassinosteroids have been implicated in the differentiation of vascular cell types in herbaceous plants, but their roles during secondary growth and wood formation are not well defined. Here we pharmacologically and genetically manipulated brassinosteroid levels in poplar trees and assayed the effects on secondary growth and wood formation, and on gene expression within stems. Elevated brassinosteroid levels resulted in increases in secondary growth and tension wood formation, while inhibition of brassinosteroid synthesis resulted in decreased growth and secondary vascular differentiation. Analysis of gene expression showed that brassinosteroid action is positively associated with genes involved in cell differentiation and cell-wall biosynthesis. The results presented here show that brassinosteroids play a foundational role in the regulation of secondary growth and wood formation, in part through the regulation of cell differentiation and secondary cell wall biosynthesis.


Assuntos
Brassinosteroides/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Madeira/crescimento & desenvolvimento , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA