Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nano Lett ; 23(24): 11755-11762, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091579

RESUMO

The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 µm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.


Assuntos
Fibroínas , Frutas/microbiologia , Antioxidantes/farmacologia , Antibacterianos/farmacologia
2.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543030

RESUMO

Improving the shelf lives of fruits is challenging. The biodegradable polysaccharide pullulan exhibits excellent film-forming ability, gas barrier performance, and natural decomposability, making it an optimal material for fruit preservation. To overcome problems of high cost and film porosity of existing packaging technologies, we aimed to develop pullulan-based packaging paper to enhance the shelf lives of fruits. A thin paper coating comprising a mixture of 15 wt.% pullulan solution at various standard viscosities (75.6, 77.8, and 108.5 mPa·s) with tea polyphenols (15:2) and/or vitamin C (150:1) improved the oxygen transmission rate (120-160 cm3 m-2·24 h·0.1 MPa), water vapor transmission rate (<5.44 g·mm-1 m-2·h·kPa), maximum free radical clearance rate (>87%), and antibacterial properties of base packaging paper. Grapes wrapped with these pullulan-based papers exhibited less weight loss (>4.41%) and improved hardness (>16.4%) after 10 days of storage compared to those of control grapes (wrapped in untreated/base paper). Grapes wrapped with pullulan-based paper had >12.6 wt.% total soluble solids, >1.5 mg/g soluble protein, >0.44 wt.% titratable acidity, and ≥4.5 mg 100 g-1 ascorbic acid. Thus, pullulan-based paper may prolong the shelf life of grapes with operational convenience, offering immense value for fruit preservation.


Assuntos
Conservação de Alimentos , Frutas , Glucanos , Frutas/microbiologia , Preservação Biológica , Ácido Ascórbico/farmacologia , Embalagem de Alimentos
3.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234689

RESUMO

D-limonene (4-isopropenyl-1-methylcyclohexene) is an important compound in several citrus essential oils (such as orange, lemon, tangerine, lime, and grapefruit). It has been used as a flavoring agent and as a food preservative agent, with generally recognized as safe (GRAS) status. D-limonene has been well-studied for its anti-inflammatory, antioxidant, anti-cancer, and antibacterial properties. The antibacterial activity of D-limonene against food-borne pathogens was investigated in this study by preparing a D-limonene nanoemulsion. The D-limonene solution and nanoemulsion have been prepared in six concentrations, 0.04%, 0.08%, 0.1%, 0.2%, 0.4%, and 0.8% (v/v), respectively, and the antibacterial activity was tested against four food-borne pathogens (Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli). The results showed that the D-limonene nanoemulsion had good nanoscale and overall particle size uniformity, and its particle size was about 3~5 nm. It has been found that the D-limonene solution and nanoemulsion have a minimal inhibitory concentration of 0.336 mg/mL, and that they could inhibit the growth of microorganisms efficiently. The data indicate that the D-limonene nanoemulsion has more antibacterial ability against microorganisms than the D-limonene essential oil. After bananas are treated with 1.0% and 1.5% D-limonene nanoemulsion coatings, the water loss of the bananas during storage and the percentage of weight loss are reduced, which can inhibit the activity of pectinase. The application of a biocoating provides a good degree of antibacterial activity and air and moisture barrier properties, which help with extending the shelf life of bananas.


Assuntos
Citrus , Filmes Comestíveis , Musa , Óleos Voláteis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cicloexenos/farmacologia , Escherichia coli , Aromatizantes/farmacologia , Conservantes de Alimentos/farmacologia , Limoneno/farmacologia , Óleos Voláteis/farmacologia , Poligalacturonase , Terpenos/farmacologia , Água/farmacologia
4.
J Food Sci Technol ; 58(6): 2246-2257, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33967321

RESUMO

'Kyoho' grapevine (Vitis vinifera) treated by calcium ions solution has been proved as an effective treatment to extend grape quality during storage to reduce disease, but its molecular mechanism was not clear yet. In the current work, grape berries were treated with different concentration of Calcium chloride (CaCl2) solution, and their effects on antioxidant enzyme activity and transcriptome and metabolome in fruit were investigated. CaCl2 treatments reduced weight loss and inhibited the decrement of flesh firmness. 80 mM CaCl2 significantly increased the activity of antioxidant enzymes POD, SOD and CAT, which was the optimum experimental concentration. The study showed that the expression level of heat shock transcription factor and UBX which involved in endoplasmic reticulum stress and degradation pathway increased significantly. Moreover, the corresponding metabolites, such as heat shock protein and organic acid, also increased significantly. The misfolded proteins are transported to the cytosol for degradation, so that the preservation ability of grape is improved.

5.
Food Chem X ; 23: 101589, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39036472

RESUMO

Fruit preservation after harvest is one of the key issues in current agriculture, rural areas, and for farmers. Using chitosan to keep fruits fresh, which can reduce the harm caused by chemical preservative residue to human health. It also helps avoid the disadvantages of the high cost of physical preservation and the challenges associated with difficult operation. This review focuses on the application progress of chitosan in fruit preservation. Studies have shown that chitosan inhibits the growth of bacteria and fungi, and delays fruit aging and decay. Furthermore, it can regulate the respiration and physiological metabolism of fruit, helping to maintain its quality and nutritional value. The preservation mechanism of chitosan includes its antibacterial properties, film-forming properties, and its effects on the physiological processes of fruit. However, in practical applications, issues such as determining the optimal concentration and treatment of chitosan still require further research and optimization.

6.
Int J Biol Macromol ; 256(Pt 1): 128424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008139

RESUMO

A large number of fresh fruits are wasted in the supply chain due to spoilage, so it is crucial to develop fruit preservation materials. Herein, two novel Ag-MOFs/carboxymethyl filter paper (Ag-MOFs/CMFP) composites were successfully synthesized by in situ facile synthesis, which can be used as packaging materials to delay fruit spoilage. The synthesis process is simple and environmentally friendly, and the reaction conditions are mild. The mechanical property, water stability, and antibacterial activity of the as-synthesized Ag-MOFs/CMFP composites were investigated. Specifically, the composites exhibited high mechanical performance and the tensile strength was >10.00 MPa. Moreover, the composites displayed good water stability and can remain stable in water environment for >7 days, which can be attributed to the strong interaction between Ag-MOFs and CMFP. Significantly, Ag-MOF particles endow the composite papers with excellent antibacterial activity, which can inactivate 99.9 % of the bacteria. Attributed to these characteristics, these composite papers were used as fruit fresh-keeping materials and can prolong the shelf-life of cherry tomatoes and peaches for >10 days. This research not only provides a facile synthesis strategy for the flexible MOFs paper, but also provides instructive guidance for related research on fruit preservation materials.


Assuntos
Celulose , Frutas , Prata/farmacologia , Antibacterianos/farmacologia , Água
7.
Int J Biol Macromol ; 274(Pt 1): 133398, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917925

RESUMO

Sodium alginate (SA) is widely used in the food, biomedical, and chemical industries due to its biocompatibility, biodegradability, and excellent film-forming properties. This article introduces a simple method for preparing uniform alginate-based packaging materials with exceptional properties for fruit preservation. The alginate was uniformly crosslinked by gradually releasing calcium ions triggered by the sustained hydrolysis of gluconolactone (GDL). A cinnamaldehyde (CA) emulsion, stabilized by xanthan without the use of traditional surfactants, was tightly incorporated into the alginate film to enhance its antimicrobial, antioxidant, and UV shielding properties. The alginate-based film effectively blocked ultraviolet rays in the range of 400-200 nm, while allowing for a visible light transmittance of up to 70 %. Additionally, it showed an increased water contact angle and decreased water vapor permeability. The alginate-based film was also employed in the preparation of coated paper through the commonly used coating process in the papermaking industry. The alginate-based material displayed excellent antioxidant properties and antimicrobial activity against Escherichia coli, Staphylococcus aureus and Botrytis cinerea, successfully extending the shelf life of strawberries to 7 days at room temperature. This low-cost and facile method has the potential to drive advancements in the food and biomedical fields by tightly incorporating active oil onto a wide range of biomacromolecule substrates.


Assuntos
Acroleína , Alginatos , Antioxidantes , Frutas , Alginatos/química , Frutas/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Escherichia coli/efeitos dos fármacos
8.
Int J Biol Macromol ; 273(Pt 1): 133111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876238

RESUMO

In this study, we developed punicalagin-loaded antimicrobial films based on soy protein isolate (SPI) and apple pectin (AP). The AP was derived from apple pomace waste while the punicalagin was obtained from pomegranate peel. Punicalagin was identified to exist in both α- and ß-isomers, with the ß-type being predominant. The composite films were characterized using scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Our results demonstrated that the incorporation of AP significantly enhanced the mechanical strength, heat resistance, and barrier properties of the films. Moreover, the composite films integrated with punicalagin exhibited excellent antimicrobial activities against Staphylococcus aureus (with a minimum bactericidal concentration value of 0.25 %), Escherichia coli (with a minimum bactericidal concentration value of 0.50 %), and Aspergillus niger. Finally, these antimicrobial film solutions were tested as coatings on strawberries and found to have significantly better effects on reducing weight loss, improving shelf-life, and maintaining the freshness of strawberries compared to coatings without punicalagin. The results indicate that antimicrobial coatings loaded with punicalagin hold great promise as multifunctional active packaging materials for fruit preservation.


Assuntos
Filmes Comestíveis , Conservação de Alimentos , Fragaria , Taninos Hidrolisáveis , Malus , Pectinas , Proteínas de Soja , Proteínas de Soja/química , Fragaria/química , Pectinas/química , Pectinas/farmacologia , Malus/química , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Conservação de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos , Escherichia coli/efeitos dos fármacos
9.
Food Chem ; 438: 138002, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37980874

RESUMO

Food safety issues and food waste have always been hot topics of concern. This study aimed to develop a recyclable bactericidal packaging film that combines polylactic acid (PLA), graphitic carbon nitride (CN) and carbon nanotubes (CNT) to extend food shelf life. This film exhibited compactness and thermostability, as observed by scanning electron microscope and differential scanning calorimeter. The temperature of P/CN/CNT film could still reach 54 ± 4 °C after being used for 3 times. The film still has bactericidal activity on the 5th cycle use except for L. monocytogenes revealed by morphological characterization on bacteria. This film effectively extended the shelf life of banana to 7 days, as confirmed by measurements of hardness, pH value and total bacterial count of banana. This study provides a packaging film with recyclable bactericidal ability.


Assuntos
Musa , Nanotubos de Carbono , Eliminação de Resíduos , Embalagem de Alimentos , Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Conservação de Alimentos
10.
J Food Sci ; 89(1): 404-418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010738

RESUMO

Fresh produce have a more limited shelf life than processed ones. Their sensory attributes such as appearance and surface texture are important features in consumer perception and liking. The decomposition of fresh produce, which is caused by enzymes, chemical reactions, and microbial infections, often caused by Colletotrichum species, is inevitable. However, it can be slowed down. Several materials have been developed for this purpose, with an emphasis on active coatings using nanomaterials. In this study, the protective effects of a zein coating containing chitosan nanowhiskers (CSW) for the maintenance of fruit quality were investigated using guava (Psidium guajava L.) as a model fruit. CSW were previously characterized, and their antifungal effects against distinct Colletotrichum species (Colletotrichum asianum, Colletotrichum tropicale, Colletotrichum gloeosporioides, and Colletotrichum brevisporum) were proven. Coatings were characterized by thermogravimetric analysis, optical profilometry, and mechanical properties. Total soluble solids, pH, mass loss, and visual inspection of uncoated and coated guava fruits were also verified during 9 days. Results show that CSW length and aspect ratio decreased for longer extraction times. A similar behavior was found for x-ray diffraction in which peak intensity decreases under the same conditions. CSW degradation (ca. 250-400°C) also depends on extraction time in which more crystalline whiskers are the most thermally stable ones. The addition of CSW did not significantly (p < 0.05) modify the homogeneity and continuity of coating but prevented microbial growth assuring fruit quality during storage. In summary, coatings protected guava fruits from post-harvest spoilage while preserving quality and extending shelf life. PRACTICAL APPLICATION: Fresh foods such as fruits and vegetables have a more limited shelf life than processed ones.


Assuntos
Quitosana , Filmes Comestíveis , Zeína , Antifúngicos/farmacologia , Frutas/química , Quitosana/química , Zeína/análise , Conservação de Alimentos/métodos
11.
Foods ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123513

RESUMO

Edible coatings and films have gained substantial attention as a promising and sustainable technology for fruit preservation. This study employed a bibliometric analysis to identify core research areas, research gaps, and emerging trends, thus providing a comprehensive roadmap for future research on the use of edible coatings and films for fruit quality preservation. The study involved 428 research articles related to edible coatings and films for fruit preservation published in the Scopus database before 06 October 2023. Utilizing Vosviewer and R for network analysis, we generated network visualization maps, research performance statistics, and identified key contributors and their collaborations. The results show the evolution of this field into three distinct phases: Initial Exploration (1998-2007), Growing Interest (2008-2015), and Rapid Expansion (2016-2023). The study revealed contributions from 1713 authors, with the first article appearing in 1998. Brazil and China emerged as the most productive countries in this domain. The core research areas focus on biomaterials, functional properties, and natural substances. Identified research gaps include pilot and industrial-scale applications, the lack of a regulatory framework and safety guidelines, and the application of artificial intelligence (AI), particularly deep learning and machine learning, in this field of edible coatings and films for fruit preservation. Overall, this study offers a scientific understanding of past achievements and ongoing research needs, thus aiming to boost a broader adoption of edible coatings and films by consumers and the food industry to preserve fruit quality, thereby enhancing their societal and environmental impact.

12.
Int J Biol Macromol ; 268(Pt 2): 131790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677693

RESUMO

The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.


Assuntos
Acroleína , Celulose , Embalagem de Alimentos , Fragaria , Interações Hidrofóbicas e Hidrofílicas , Papel , Celulose/química , Celulose/análogos & derivados , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Fragaria/microbiologia , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Silanos/química , Conservação de Alimentos/métodos , Propilaminas/química , Testes de Sensibilidade Microbiana
13.
Int J Biol Macromol ; 271(Pt 1): 132605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788869

RESUMO

Natural preservatives such as cinnamaldehyde (CIN) are garnering increasing interest to replace their synthetic counterparts in maintaining fruit freshness and safety. However, their long-term effectiveness and widespread application have been greatly limited due to high volatility and potent aroma. To address these challenges, we developed a viable and simple strategy to prepare a multifunctional active coating for fruit preservation by incorporating host-guest inclusion complex of CIN and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) CIN@HP-ß-CD into hyaluronic acid (HA), a natural polysaccharide with exceptional film-forming properties. The as-prepared HA/CIN@HP-ß-CD coatings exhibited universal surface affinity, excellent antimicrobial performance, and satisfactory antioxidant properties with no potential toxicity. Release kinetic studies have demonstrated that CIN in the coating is continuously and slowly released. Furthermore, freshness preservation experiments on bananas and fresh-cut apples demonstrated that the developed coating is effective in preserving the color of fruit, decreasing the weight loss rate, preventing the microorganism's growth, and significantly extending the period of freshness, exhibiting the potential for application in fruit preservation.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Acroleína , Conservação de Alimentos , Frutas , Ácido Hialurônico , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Frutas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Conservação de Alimentos/métodos , Ácido Hialurônico/química , Antioxidantes/química , Antioxidantes/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
14.
Int J Biol Macromol ; 266(Pt 1): 131002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522680

RESUMO

Bio-based food packaging materials have elicited growing interests due to their great degradability, high safety and active biofunctions. In this work, by simultaneously introducing the polyphenolic extracts from Capsicum annuum leaves and ferric ion (Fe3+) into the Polyvinyl alcohol/kappa-carrageenan (PVA/κ-carrageenan)-based film-forming matrix, an active package film was developed, with the purpose to improve the food shelf life. The experimental results indicated that the existence of Fe3+ can not only improve the mechanical properties owing to the multiple dynamic coordinated interactions, but also endow the composite films with excellent fire-retardancy. Moreover, the composite films could display excellent UV resistant performance, water vapor/oxygen gas barrier properties and antioxidant activities with the corporation of polyphenols. In particular, the highest DPPH and ABTS radical scavenging capacities for composite film (PC-PLP7 sample) were evaluated to be 82.5 % and 91.1 %, respectively. Higher polyphenol concentration is favorable to the bio-functions of the materials. Benefitting from these features, this novel kind of films with a dense and steady micro-structure could be further applicated in fruit preservations, where the ripening bananas were ensured with the high storage quality. This integration as a prospective food packaging material provides an economic and eco-friendly approach to excavate the high added-values of biomass.


Assuntos
Capsicum , Carragenina , Embalagem de Alimentos , Frutas , Folhas de Planta , Polifenóis , Álcool de Polivinil , Capsicum/química , Polifenóis/química , Carragenina/química , Álcool de Polivinil/química , Folhas de Planta/química , Embalagem de Alimentos/métodos , Frutas/química , Antioxidantes/química , Compostos Férricos/química
15.
Int J Biol Macromol ; 265(Pt 1): 130798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479674

RESUMO

Controlling ethylene production and microbial infection are key factors to prolong the shelf life of climacteric fruit. Herein, a nanocomposite film, hexanal-loaded ZIF-8/CS (HZCF) with "nano-barrier" structure, was developed by a one-pot co-crystallized of ZIF-8 in situ growth on quaternized chitosan (CS) and encapsulation of hexanal into ZIF-8 via microporous adsorption. The resultant film realized the temperature responsive release of hexanal via the steric hindrance and hierarchical pore structure as "nano-barrier", which can inhibit ethylene production in climacteric fruit on demand. Based on this, the maximum ethylene inhibition rate of HZCF was up to 52.6 %. Meanwhile, the film exhibits excellent antibacterial, mechanical, UV resistance and water retention properties, by virtue of the functional synergy between ZIF-8 and CS. Contributed to the multifunctional features, HZCF prolonged the shelf life of banana and mango for at least 16 days, which is 8 days longer than that of control fruit. More strikingly, HZCF is washable and biodegradable, which is expected to replace non-degradable plastic film. Thus, this study provides a convenient novel approach to simplify the encapsulation of active molecule on metal-organic frameworks (MOFs), develops a packaging material for high-efficient freshness preservation, and helps to alleviate the survival crisis caused by food waste.


Assuntos
Aldeídos , Quitosana , Climatério , Eliminação de Resíduos , Quitosana/farmacologia , Quitosana/química , Frutas , Temperatura , Etilenos/química , Antibacterianos/farmacologia , Embalagem de Alimentos
16.
Carbohydr Polym ; 326: 121619, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142076

RESUMO

Starch-based films have received considerable attention, owing to their commendable biocompatible and biodegradable properties; however, their poor ultraviolet (UV)-blocking and antibacterial performances limit their application in fruit preservation. Herein, bio-based bifunctional benzoxazine (Bi-BOZ) compounds with different carbon chain lengths were synthesized, and the influence of chain lengths on the antibacterial effect was explored. Benzoxazine with 1,12-dodecanediamine as the amine source (BOZ-DDA) exhibited excellent antibacterial and antibiofilm activities, with minimum inhibitory concentrations of 21.7 ± 2.2 and 23.3 ± 2.6 µg/mL against Escherichia coli and Staphylococcus aureus, respectively, mainly because the electrostatic attraction and hydrophobic effect of BOZ-DDA, effectively disrupted the bacterial integrity. DS/DDA films with hydrophobic, antibacterial, and UV-resistant abilities were prepared by the Schiff-base reaction between BOZ-DDA and dialdehyde starch (DS). The interactions between the films increased with BOZ-DDA content, enhanced mechanical and barrier properties. DS/DDA films exhibited acid-responsive antibacterial activity attributed to the acid hydrolysis of Schiff bases, released of BOZ-DDA from the films, and the protonation of BOZ-DDA. DS/DDA films exhibited commendable antibacterial and anti-ultraviolet characteristics compared to commercially available films, allowing them to prevent the degradation of mangoes and grapes. As sustainable antibacterial materials, the multifunctional DS/DDA films manifest promising prospects in fruit preservation packaging applications.


Assuntos
Benzoxazinas , Frutas , Bases de Schiff , Antibacterianos/farmacologia , Escherichia coli , Embalagem de Alimentos , Amido
17.
Int J Biol Macromol ; 262(Pt 2): 130095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346621

RESUMO

In this study, Cordyceps militaris matrix was employed for the first time to fabricate a biodegradable food packaging. Carmine and Ag@CuBTC were introduced to cross-link with mycelium and were uniformly dispersed within the matrix to enhance the water resistance, antimicrobial, and antioxidant properties of the bio-films. The bio-film displayed high biodegradability, with nearly 100 % degradation achieved after three weeks. The bio-film exhibited exceptional resistance to oxidation (49.30 % DPPH and 93.94 % ABTS•+), as well as effective inhibitory capabilities against E. coli and S. aureus, respectively. The composite film maintained a high CO2/O2 selective permeability, which was advantageous for mitigating fruit metabolism and extending shelf life. Simultaneously, food preservation experiments confirmed that these bio-films can decelerate the spoilage of fruits and effectively prolong the shelf-life of food. The experimental findings indicated that the prepared Bio-R-Ag@Cu film held promise as an environmentally friendly biodegradable material for food packaging.


Assuntos
Cordyceps , Estruturas Metalorgânicas , Frutas , Escherichia coli , Staphylococcus aureus , Embalagem de Alimentos , Antibacterianos
18.
Int J Biol Macromol ; 263(Pt 2): 130437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412935

RESUMO

In this work, pullulan (PUL) nanofibrous films incorporated with water-in-oil emulsions (PE) were prepared by microfluidic blowing spinning (MBS). The microstructures of nanofibers were characterized by scanning electron microscopy (SEM), fourier transform infrared (FT-IR), and X-ray diffraction (XRD). With the addition of W/O emulsions, the thermal stability, mechanical, and water barrier properties of PUL nanofibers were improved. Increases in emulsion content significantly affected the antioxidant and antimicrobial properties of nanofibrous films. ABTS and DPPH free radical scavenging rates increased from 10.26 % and 8.57 % to 60.66 % and 57.54 %, respectively. The inhibition zone of PE nanofibers against E. coli and S. aureus increased from 11.00 to 20.00 and from 15.67 to 21.17 mm, respectively. In addition, we investigated the freshness effectiveness of PE nanofibrous films on fresh-cut apples. PE nanofibrous films significantly maintained the firmness, and reduced the weight loss and browning index of the fresh-cut apple, throughout the 4 days of storage. Thus, the PE nanofibrous films exhibited good potential to prolong the shelf life of fresh-cut fruit and promote the development of active food packaging.


Assuntos
Glucanos , Malus , Nanofibras , Nanofibras/química , Espectroscopia de Infravermelho com Transformada de Fourier , Emulsões , Escherichia coli , Staphylococcus aureus , Microfluídica , Embalagem de Alimentos , Tecnologia , Água
19.
Int J Biol Macromol ; 254(Pt 3): 127971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944720

RESUMO

Developing efficient and safe antibacterial agents to inhibit pathogens including Physalospora piricola and Staphylococcus aureus is of great importance. Herein, a novel compound composed of Rosa roxburghii procyanidin, chitosan and selenium nanoparticle (RC-SeNP) was bio-synthesized, with the average diameter and zeta potential being 84.56 nm and -25.60 mV, respectively. The inhibition diameter of the RC-SeNP against P. piricola and S. aureus reached 18.67 mm and 13.13 mm, and the maximum scavenging activity against DPPH and ABTS reached 96.02% and 98.92%, respectively. Moreover, the RC-SeNP completely inhibited the propagation P. piricola and S. aureus on actual apples, suggesting excellent in vivo antimicrobial capacity. The transcriptome analysis and electron microscope observation indicated that the antibacterial activity would be attributed to adhering to and crack the cell walls as well as damage the cytomembrane and nucleus. Moreover, the RC-SeNP effectively maintained the vitamin C, total acid, and water contents of red bayberry, demonstrating potential application for fruit preservation. At last, the RC-SeNP showed no cell toxicity and trace selenium residual dose (0.03 mg/kg on apple, 0.12 mg/kg on red bayberry). This study would enlighten future development on novel nano-bioantibacterial agents for sustainable agriculture.


Assuntos
Quitosana , Nanopartículas , Rosa , Selênio , Antioxidantes/farmacologia , Antioxidantes/química , Selênio/química , Quitosana/química , Staphylococcus aureus , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia
20.
Int J Biol Macromol ; 279(Pt 2): 135297, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39233149

RESUMO

The development of intelligent responsive reactive packaging materials with natural polymers shows excellent potential in food preservation. In this study, eco-friendly, pH-sensitive sodium alginate (SA)/hydroxyapatite (HA)/quaternary ammonium chitosan (HACC) composite microspheres loading curcumin (CUR) with excellent antibacterial and antioxidant activities were successfully synthesized. Scanning electron microscopy (SEM) and nitrogen adsorption/desorption tests indicated that the doping of HA substantially increased the specific surface area and pore volume of the microspheres. The loading experiments showed that the efficiency of the microspheres was significantly increased by 49.47 % and 55.10 %, respectively, when HA and HACC were incorporated into the SA network. The release test results suggested that the release rate of SA/HA/HACC microspheres loading CUR (SA/HA/HACC@CUR) increased as the pH decreased, demonstrating notable pH-responsive release characteristics. DPPH free radical scavenging experiments demonstrated that the SA/HA/HACC@CUR had excellent and long-lasting antioxidant capacity. The antibacterial experiments revealed that the SA/HA/HACC@CUR had excellent antibacterial properties, with inhibition rates of 88.73 % and 92.52 % against E. coli and S. aureus, respectively. Making coatings out of microspheres could effectively slow down the rotting and deterioration of cherry tomatoes during storage, suggesting that microspheres with intelligent responses have a broad application prospect in fruit preservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA