Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008961

RESUMO

Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein associated with neurodegenerative diseases. In patients with progressive supranuclear palsy (PSP), FtMt was shown to accumulate in nigral neurons. Here, we investigated FtMt and LC3 in the post-mortem midbrain of PSP patients to reveal novel aspects of the pathology. Immunohistochemistry was used to assess the distribution and abnormal changes in FtMt and LC3 immunoreactivities. Colocalization analysis using double immunofluorescence was performed, and subcellular patterns were examined using 3D imaging and modeling. In the substantia nigra pars compacta (SNc), strong FtMt-IR and LC3-IR were observed in the neurons of PSP patients. In other midbrain regions, such as the superior colliculus, the FtMt-IR and LC3-IR remained unchanged. In the SNc, nigral neurons were categorized into four patterns based on subcellular LC3/FtMt immunofluorescence intensities, degree of colocalization, and subcellular overlapping. This categorization suggested that concomitant accumulation of LC3/FtMt is related to mitophagy processes. Using the LC3-IR to stage neuronal damage, we retraced LC3/FtMt patterns and revealed the progression of FtMt accumulation in nigral neurons. Informed by these findings, we proposed a hypothesis to explain the function of FtMt during PSP progression.


Assuntos
Ferritinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Substância Negra/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Ferritinas/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mitofagia , Ligação Proteica , Transporte Proteico , Substância Negra/patologia , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/etiologia
2.
CNS Neurosci Ther ; 30(3): e14663, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38439636

RESUMO

BACKGROUND: Epilepsy is a widespread and chronic disease of the central nervous system caused by a variety of factors. Mitochondrial ferritin (FtMt) refers to ferritin located within the mitochondria that may protect neurons against oxidative stress by binding excess free iron ions in the cytoplasm. However, the potential role of FtMt in epilepsy remains unclear. We aimed to investigate whether FtMt and its related mechanisms can regulate epilepsy by modulating ferroptosis. METHODS: Three weeks after injection of adeno-associated virus (AAV) in the skull of adult male C57BL/6 mice, kainic acid (KA) was injected into the hippocampus to induce seizures. Primary hippocampal neurons were transfected with siRNA using a glutamate-mediated epilepsy model. After specific treatments, Western blot analysis, immunofluorescence, EEG recording, transmission electron microscopy, iron staining, silver staining, and Nissl staining were performed. RESULTS: At different time points after KA injection, the expression of FtMt protein in the hippocampus of mice showed varying degrees of increase. Knockdown of the FtMt gene by AAV resulted in an increase in intracellular free iron levels and a decrease in the function of iron transport-related proteins, promoting neuronal ferroptosis and exacerbating epileptic brain activity in the hippocampus of seizure mice. Additionally, increasing the expression level of FtMt protein was achieved by AAV-mediated upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene in the hippocampus of seizure mice. CONCLUSIONS: In epilepsy, Nrf2 modulates ferroptosis by involving the expression of FtMt and may be a potential therapeutic mechanism of neuronal injury after epilepsy. Targeting this relevant process for treatment may be a therapeutic strategy to prevent epilepsy.


Assuntos
Epilepsia , Ferroptose , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ácido Caínico/toxicidade , Fator 2 Relacionado a NF-E2/genética , Epilepsia/induzido quimicamente , Convulsões , Ácido Glutâmico , Dependovirus , Modelos Animais de Doenças , Ferritinas , Homeostase
3.
Cell Signal ; 75: 109749, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858123

RESUMO

OBJECTIVE: This study is to investigate the effects and the mechanisms of mitochondrial ferritin (FtMt) on the glioma tumorigenesis and angiogenesis. METHODS: FtMt expression was detected in glioma tissues and cells as well as in nude mouse tissues. Cell proliferation and apoptosis rate were observed following transfection of LV-FtMt or sh-FtMt in glioma cell line. Moreover, glioma cells with FtMt over-expression/knockdown were co-cultured with human umbilical vein endothelial cells (HUVECs) to observe its function on HUVEC proliferation, angiogenic ability and the vascular endothelial growth factor (VEGF) content. Gain and loss of function of small nucleolar RNA host gene 1 (SNHG1) and miR-9-5p were performed in glioma cells and GBM nude mice to observe its effect on glioma cell proliferation and HUVEC angiogenic ability. Luciferase reporter gene and RIP assay were employed to inspect the interactions among SNHG1, FtMt and miR-9-5p. Additionally, a xenograft mouse model was applied to determine the role of FtMt in glioma. RESULTS: In this work, FtMt was strongly expressed in glioma tissues and cells as well as in nude mouse tumor tissues. The employment of the loss-of and gain-of functions assays illustrated that FtMt enhanced glioma tumorigenesis and angiogenesis. Mechanistically, our findings showed that FtMt positively related to SNHG1 while negatively correlated with miR-9-5p, and both SNHG1 and FtMt can competitively bind with miR-9-5p. Besides, the inhibition effects of sh-FtMt on glioma were surveyed in vivo experiments. CONCLUSION: Evidence in this study suggested that FtMt promotes glioma tumorigenesis and angiogenesis via SNHG1 mediated miR-9-5p expression, which may provide a theoretical basis for glioma treatment.


Assuntos
Carcinogênese/metabolismo , Ferritinas/fisiologia , Glioma/metabolismo , MicroRNAs/metabolismo , Proteínas Mitocondriais/fisiologia , RNA Longo não Codificante/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
4.
Redox Biol ; 36: 101670, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32810738

RESUMO

Cellular iron, at the physiological level, is essential to maintain several metabolic pathways, while an excess of free iron may cause oxidative damage and/or provoke cell death. Consequently, iron homeostasis has to be tightly controlled. Under hypoxia these regulatory mechanisms for human macrophages are not well understood. Hypoxic primary human macrophages reduced intracellular free iron and increased ferritin expression, including mitochondrial ferritin (FTMT), to store iron. In parallel, nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy, decreased and was proven to directly regulate FTMT expression. Reduced NCOA4 expression resulted from a lower rate of hypoxic NCOA4 transcription combined with a micro RNA 6862-5p-dependent degradation of NCOA4 mRNA, the latter being regulated by c-jun N-terminal kinase (JNK). Pharmacological inhibition of JNK under hypoxia increased NCOA4 and prevented FTMT induction. FTMT and ferritin heavy chain (FTH) cooperated to protect macrophages from RSL-3-induced ferroptosis under hypoxia as this form of cell death is linked to iron metabolism. In contrast, in HT1080 fibrosarcome cells, which are sensitive to ferroptosis, NCOA4 and FTMT are not regulated. Our study helps to understand mechanisms of hypoxic FTMT regulation and to link ferritinophagy and macrophage sensitivity to ferroptosis.


Assuntos
Ferroptose , Ferritinas/genética , Humanos , Hipóxia/genética , Ferro/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
5.
Oncotarget ; 8(68): 112341-112353, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348829

RESUMO

The abrogation of cAMP generation by overexpression of PDE isoforms promotes the inflammatory pathology, and the PDE inhibitors have showed the potential anti-inflammation effects in clinical. However, the function of PDE inhibitors in cancer treatment remains unclear. We here investigated the role of PDE4 inhibitor Roflumilast in the treatment of ovarian cancer. We found that Roflumilast could effectively inhibit the proliferation, and induce apoptosis and cell cycle arrest in two ovarian cancer cell lines OVCAR3 and SKOV3. Meanwhile, the cAMP/PKA/CREB signals was activated by Roflumilast, which was accompanied by the up-regulation of mitochondrial ferritin (FtMt) level. Interestingly, forced expression of FtMt in ovarian cancer enhanced the apoptosis and inhibited tumor growth and the PKA inhibitor H89 and knockdown of CREB significantly repressed the expression of FtMt to restore the tumor proliferation and inhibit apoptosis. In addition, we found that Roflumilast-induced phosphorylated CREB directly promoted transcription of FtMt, indicating that Roflumilast up-regulated the expression of FtMt in ovarian cancer via cAMP/PKA/CREB signals. The anti-tumor role of Roflumilast in vivo was also demonstrated, the treatment of roflumilast effectively inhibited tumor proliferation and elevated the FtMt expression to restrict the tumor growth via the activation of cAMP/PKA/CREB signals in ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA