Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803605

RESUMO

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Assuntos
Infecções por Coronavirus , Coronavirus , Dipeptidil Peptidase 4 , Pangolins , Animais , Humanos , Camundongos , Quirópteros , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Endopeptidases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Coronavirus/fisiologia
2.
Mol Cell ; 78(4): 779-784.e5, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32362314

RESUMO

The pandemic coronavirus SARS-CoV-2 threatens public health worldwide. The viral spike protein mediates SARS-CoV-2 entry into host cells and harbors a S1/S2 cleavage site containing multiple arginine residues (multibasic) not found in closely related animal coronaviruses. However, the role of this multibasic cleavage site in SARS-CoV-2 infection is unknown. Here, we report that the cellular protease furin cleaves the spike protein at the S1/S2 site and that cleavage is essential for S-protein-mediated cell-cell fusion and entry into human lung cells. Moreover, optimizing the S1/S2 site increased cell-cell, but not virus-cell, fusion, suggesting that the corresponding viral variants might exhibit increased cell-cell spread and potentially altered virulence. Our results suggest that acquisition of a S1/S2 multibasic cleavage site was essential for SARS-CoV-2 infection of humans and identify furin as a potential target for therapeutic intervention.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/química , Animais , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Furina/química , Furina/genética , Furina/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/virologia , Pandemias , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Ligação Viral
3.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881779

RESUMO

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Assuntos
COVID-19 , Furina , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Motivos de Aminoácidos/genética , Animais , COVID-19/virologia , Chlorocebus aethiops , Furina/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral/genética
4.
J Biol Chem ; 299(6): 104763, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119851

RESUMO

Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2. The virus binds to angiotensinogen converting enzyme 2 (ACE2), which mediates viral entry into mammalian cells. COVID-19 is notably severe in the elderly and in those with underlying chronic conditions. The cause of selective severity is not well understood. Here we show cholesterol and the signaling lipid phosphatidyl-inositol 4,5 bisphosphate (PIP2) regulate viral infectivity through the localization of ACE2's into nanoscopic (<200 nm) lipid clusters. Uptake of cholesterol into cell membranes (a condition common to chronic disease) causes ACE2 to move from PIP2 lipids to endocytic ganglioside (GM1) lipids, where the virus is optimally located for viral entry. In mice, age and high-fat diet increase lung tissue cholesterol by up to 40%. And in smokers with chronic disease, cholesterol is elevated 2-fold, a magnitude of change that dramatically increases infectivity of virus in cell culture. We conclude increasing the ACE2 location near endocytic lipids increases viral infectivity and may help explain the selective severity of COVID-19 in aged and diseased populations.


Assuntos
COVID-19 , Hipercolesterolemia , Animais , Camundongos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/metabolismo , Colesterol/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Mamíferos/metabolismo
5.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634134

RESUMO

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Assuntos
Canais Epiteliais de Sódio , Proteólise , Sódio , Animais , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/genética , Masculino , Feminino , Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Homeostase , Furina/metabolismo , Furina/genética , Camundongos , Colo/metabolismo , Potássio/metabolismo , Dieta Hipossódica , Camundongos da Linhagem 129 , Mutação , Amilorida/farmacologia
6.
EMBO J ; 39(10): e105114, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32246845

RESUMO

The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.


Assuntos
Brônquios/citologia , Expressão Gênica , Pulmão/citologia , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , Análise de Célula Única , Adulto , Envelhecimento , Enzima de Conversão de Angiotensina 2 , Brônquios/metabolismo , COVID-19 , Células Cultivadas , Doença Crônica/epidemiologia , Infecções por Coronavirus/genética , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Alemanha , Células Caliciformes/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/genética , Padrões de Referência , Análise de Sequência de RNA , Caracteres Sexuais , Fumar , Bancos de Tecidos
7.
Biochem Cell Biol ; 102(3): 275-284, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484367

RESUMO

Neutrophil myeloperoxidase/H2O2/chloride system is a key mechanism to control pathogen infection. This enzyme, myeloperoxidase, plays a pivotal role in the arsenal of azurophilic granules that are released through degranulation upon neutrophil activation, which trigger local hypochlorous acid production. Myeloperoxidase gene encodes a protein precursor named promyeloperoxidase that arbors a propeptide that gets cleaved later during secretory routing in post-endoplasmic reticulum compartments. Although evidence suggested that this processing event was performed by one or different enzymes from the proprotein convertases family, the identity of this enzyme was never investigated. In this work, the naturally producing myeloperoxidase promyelocytic cell line HL-60 was used to investigate promyeloperoxidase cleavage during granulocytic differentiation in response to proprotein convertase inhibitors decanoyl-RVKR-chloromethylketone and hexa-d-arginine. Stable PC knockdown of endogenously expressed proprotein convertases, furin and PC7, was achieved using lentiviral delivery of shRNAs. None of the knockdown cell line could reproduce the effect of the pan-proprotein convertases inhibitor decanoyl-RVKR-chloromethylketone that accumulated intracellular promyeloperoxidase stores in HL-60 cells, therefore illustrating that both furin and PC7 redundantly process this proprotein.


Assuntos
Furina , Peroxidase , Humanos , Células HL-60 , Furina/metabolismo , Furina/genética , Peroxidase/metabolismo , Granulócitos/metabolismo , Granulócitos/citologia , Diferenciação Celular , Subtilisinas/metabolismo , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Clorometilcetonas de Aminoácidos/farmacologia
8.
Eur J Immunol ; 53(6): e2250246, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015057

RESUMO

The proprotein convertase subtilisin/kexins (PCSKs) regulate biological actions by cleaving immature substrate proteins. The archetype PCSK, FURIN, promotes the pathogenicity of viruses by proteolytically processing viral proteins. FURIN has also important regulatory functions in both innate and adaptive immune responses but its role in the CD8+ CTLs remains enigmatic. We used a T-cell-specific FURIN deletion in vivo to demonstrate that FURIN promotes host response against the CTL-dependent lymphocytic choriomeningitis virus by virtue of restricting viral burden and augmenting interferon gamma (IFNG) production. We also characterized Furin KO CD8+ T cells ex vivo, including after their activation with FURIN regulating cytokines IL12 or TGFB1. Furin KO CD8+ T cells show an inherently activated phenotype characterized by the upregulation of effector genes and increased frequencies of CD44+ , TNF+ , and IFNG+ cells. In the activated CTLs, FURIN regulates the productions of IL2, TNF, and GZMB and the genes associated with the TGFBR-signaling pathway. FURIN also controls the expression of Eomes, Foxo1, and Bcl6 and the levels of ITGAE and CD62L, which implies a role in the development of CTL memory. Collectively, our data suggest that the T-cell expressed FURIN is important for host responses in viral infections, CTL homeostasis/activation, and memory development.


Assuntos
Coriomeningite Linfocítica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T CD8-Positivos , Furina/genética , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica , Memória Imunológica
9.
Biochem Biophys Res Commun ; 701: 149629, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330730

RESUMO

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Assuntos
Furina , Hemina , Glicoproteínas da Membrana de Plaquetas , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Proteínas de Membrana Lisossomal , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30/metabolismo , Humanos
10.
J Virol ; 97(6): e0029423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272794

RESUMO

Serpins are a superfamily of proteins that regulate a variety of physiological processes by irreversibly inhibiting the enzymatic activity of different serine proteases. For example, Serpin Family B Member 8 (Serpin B8, also known as PI8 and CAP2) binds to and inhibits the proprotein convertase furin. Like many other viral pathogens, human immunodeficiency virus type 1 (HIV-1) exploits furin for the proteolytic activation of its envelope glycoprotein (Env). Since the furin inhibitor Serpin B8 is expressed in primary target cells of HIV-1 and induced under inflammatory conditions, we hypothesized that it might interfere with HIV-1 Env maturation and decrease infectivity of newly produced virions. Indeed, recombinant Serpin B8 reduced furin-mediated cleavage of an HIV-1 Env reporter substrate in vitro. However, Serpin B8 did not affect Env maturation or reduce HIV-1 particle infectivity when expressed in HIV-1-producing cells. Immunofluorescence imaging, dimerization assays and in silico sequence analyses revealed that Serpin B8 failed to inhibit intracellular furin since both proteins localized to different subcellular compartments. We therefore aimed at rendering Serpin B8 active against HIV-1 by relocalizing it to furin-containing secretory compartments. Indeed, the addition of a heterologous signal peptide conferred potent anti-HIV-1 activity to Serpin B8 and significantly decreased infectivity of newly produced viral particles. Thus, our findings demonstrate that subcellular relocalization of a cellular protease inhibitor can result in efficient inhibition of infectious HIV-1 production. IMPORTANCE Many cellular proteases serve as dependency factors during viral infection and are hijacked by viruses for the maturation of their own (glyco)proteins. Consequently, inhibition of these cellular proteases may represent a means to inhibit the spread of viral infection. For example, several studies have investigated the serine protease furin as a potential therapeutic target since this protease cleaves and activates several viral envelope proteins, including HIV-1 Env. Besides the development of small molecule inhibitors, cell-intrinsic protease inhibitors may also be exploited to advance current antiviral treatment approaches. Here, we show that Serpin B8, an endogenous furin inhibitor, can inhibit HIV-1 Env maturation and efficiently reduce infectious HIV-1 production when rerouted to the secretory pathway. The results of our study not only provide important insights into the biology of Serpins, but also show how protein engineering of an endogenous furin inhibitor can render it active against HIV-1.


Assuntos
Furina , HIV-1 , Serpinas , Humanos , Linhagem Celular , Produtos do Gene env do Vírus da Imunodeficiência Humana , Furina/metabolismo , HIV-1/fisiologia , Serpinas/química , Serpinas/metabolismo , Serpinas/farmacologia , Replicação Viral
11.
J Med Virol ; 96(2): e29445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299743

RESUMO

Membrane-associated RING-CH (MARCH) family proteins were recently reported to inhibit viral replication through multiple modes. Previous work showed that human MARCH8 blocked Ebola virus (EBOV) glycoprotein (GP) maturation. Our study here demonstrates that human MARCH1 and MARCH2 share a similar pattern to MARCH8 in restricting EBOV GP-pseudotyped viral infection. Human MARCH1 and MARCH2 retain EBOV GP at the trans-Golgi network, reduce its cell surface display, and impair EBOV GP-pseudotyped virions infectivity. Furthermore, we uncover that the host proprotein convertase furin could interact with human MARCH1/2 and EBOV GP intracellularly. Importantly, the furin P domain is verified to be recognized by MARCH1/2/8, which is critical for their blocking activities. Besides, bovine MARCH2 and murine MARCH1 also impair EBOV GP proteolytic processing. Altogether, our findings confirm that MARCH1/2 proteins of different mammalian origins showed a relatively conserved feature in blocking EBOV GP cleavage, which could provide clues for subsequent MARCHs antiviral studies and may facilitate the development of novel strategies to antagonize enveloped virus infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Bovinos , Humanos , Camundongos , Linhagem Celular , Furina/metabolismo , Glicoproteínas , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
12.
FASEB J ; 37(5): e22933, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093709

RESUMO

FURIN, a member of the mammalian proprotein convertases (PCs) family, can promote the proteolytic maturation of proproteins. It has been shown that FURIN plays an important role in the progression of atherosclerosis (AS). Current evidence indicates that autophagy widely participates in atherogenesis. This study aimed to explore whether FURIN could affect atherogenesis via autophagy. The effect of FURIN on autophagy was studied using aortic tissues from aortic dissection patients who had BENTALL surgery, as well as macrophages and ApoE-/- mice. In atherosclerotic plaques of aortic tissues from patients, FURIN expression and autophagy were elevated. In macrophages, FURIN-shRNA and FURIN-overexpression lentivirus were used to intervene in FURIN expression. The results showed that FURIN overexpression accelerated LC3 formation in macrophages during the autophagosome formation phase. Furthermore, FURIN-induced autophagy resulted in lower lipid droplet concentrations in macrophages. The western blot revealed that FURIN regulated autophagy via the AMPK/mTOR/ULK1/PI3KIII signaling pathway. In vivo, FURIN overexpression resulted in increased macrophage LC3 formation in ApoE-/- mice atherosclerotic plaques, confirming that FURIN could inhibit the progression of AS by promoting macrophage autophagy. The present study demonstrated that FURIN suppressed the progression of AS by promoting macrophage autophagy via the AMPK/mTOR/ULK1/PI3KIII signaling pathway, which attenuated atherosclerotic lesion formation. Based on this data, current findings add to our understanding of the complexity of AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Furina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Knockout para ApoE , Aterosclerose/metabolismo , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Mamíferos/metabolismo
13.
Infection ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703289

RESUMO

BACKGROUND AND AIM: A wide range of clinical manifestations and outcomes, including liver injury, have been reported in COVID-19 patients. We investigated the association of three substantial gene polymorphisms (FURIN, IFNL4, and TLR2) with COVID-19 disease susceptibility and severity to help predict prognosis. METHODS: 150 adult COVID-19-assured cases were categorized as follows: 78 patients with a non-severe presentation, 39 patients with severe disease, and 33 critically ill patients. In addition, 74 healthy controls were included. Clinical and laboratory evaluations were carried out, including complete and differential blood counts, D-dimer, lactate dehydrogenase (LDH), C-reactive protein (CRP), procalcitonin, ferritin, interleukin-6 (Il-6), and liver and kidney functions. FURIN (rs6226), IFNL4 (rs12979860), and TLR2 (rs3804099) genotyping allelic discrimination assays were conducted using real-time PCR. RESULTS: The FURIN, IFNL4, and TLR2 genotypes and their alleles differed significantly between COVID-19 patients and controls, as well as between patients with severe or critical illness and those with a non-severe presentation. According to a multivariable regression analysis, FURIN (C/T + T/T) and TLR2 (T/C + C/C) mutants were associated with COVID-19 susceptibility, with odds ratios of 3.293 and 2.839, respectively. FURIN C/C and IFNL4 T/T mutants were significantly linked to severe and critical illnesses. Multivariate regression analysis showed that FURIN (G/C + C/C) genotypes and IFNL4 T/T homozygosity were independent risk factors associated with increased mortality. CONCLUSION: FURIN, IFNL4, and TLR2 gene variants are associated with the risk of COVID-19 occurrence as well as increased severity and poor outcomes in Egyptian patients.

14.
Gastric Cancer ; 27(2): 292-307, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280128

RESUMO

BACKGROUND: Gastric cancer (GC), the fourth leading cause of cancer-related death worldwide, with most deaths caused by advanced and metastatic disease, has limited curative options. Here, we revealed the importance of proprotein convertases (PCs) in the malignant and metastatic potential of GC cells through the regulation of the YAP/TAZ/TEAD pathway and epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSC). METHODS: The general PCs inhibitor, decanoyl-RVKR-chloromethyl-ketone (CMK), was used to repress PCs activity in CSCs of various GC cell lines. Their tumorigenic properties, drug resistance, YAP/TAZ/TEAD pathway activity, and invasive properties were then investigated in vitro, and their metastatic properties were explored in a mouse xenograft model. The prognostic value of PCs in GC patients was also explored in molecular databases of GC. RESULTS: Inhibition of PCs activity in CSCs in all GC cell lines reduced tumorsphere formation and growth, drug efflux, EMT phenotype, and invasive properties that are associated with repressed YAP/TAZ/TEAD pathway activity in vitro. In vivo, PCs' inhibition in GC cells reduced their metastatic spread. Molecular analysis of tumors from GC patients has highlighted the prognostic value of PCs. CONCLUSIONS: PCs are overexpressed in GC and associated with poor prognosis. PCs are involved in the malignant and metastatic potential of CSCs via the regulation of EMT, the YAP/TAZ/TEAD oncogenic pathway, and their stemness and invasive properties. Their repression represents a new strategy to target CSCs and impair metastatic spreading in GC.


Assuntos
Neoplasias Gástricas , Fatores de Transcrição , Humanos , Animais , Camundongos , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Neoplasias Gástricas/patologia , Modelos Animais de Doenças , Pró-Proteína Convertases/metabolismo , Células-Tronco Neoplásicas/metabolismo
15.
J Biochem Mol Toxicol ; 38(1): e23527, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37681557

RESUMO

Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.


Assuntos
Diminazena/análogos & derivados , Peptidil Dipeptidase A , Neoplasias do Colo do Útero , Feminino , Humanos , Peptidil Dipeptidase A/metabolismo , Células HeLa , Regulação para Baixo , Neoplasias do Colo do Útero/genética , Furina/genética , Furina/metabolismo , Oncogenes , Ciclo Celular , RNA Mensageiro , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
16.
Subcell Biochem ; 106: 213-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159229

RESUMO

Human papillomavirus (HPV) is associated with infection of different tissues, such as the cervix, anus, vagina, penis, vulva, oropharynx, throat, tonsils, back of the tongue, skin, the lungs, among other tissues. HPV infection may or may not be associated with the development of cancer, where HPVs not related to cancer are defined as low-risk HPVs and are associated with papillomatosis disease. In contrast, high-risk HPVs (HR-HPVs) are associated with developing cancers in areas that HR-HPV infects, such as the cervix. In general, infection of HPV target cells is regulated by specific molecules and receptors that induce various conformational changes of HPV capsid proteins, allowing activation of HPV endocytosis mechanisms and the arrival of the HPV genome to the human cell nucleus. After the transcription of the HPV genome, the HPV genome duplicates exponentially to lodge in a new HPV capsid, inducing the process of exocytosis of HPV virions and thus releasing a new HPV viral particle with a high potential of infection. This infection process allows the HPV viral life cycle to conclude and enables the growth of HPV virions. Understanding the entire infection process has been a topic that researchers have studied and developed for decades; however, there are many things to still understand about HPV infection. A thorough understanding of these HPV infection processes will allow new potential treatments for HPV-associated cancer and papillomatosis. This chapter focuses on HPV infection, the process that will enable HPV to complete its HPV life cycle, emphasizing the critical role of different molecules in allowing this infection and its completion during the HPV viral life cycle.


Assuntos
Papiloma , Infecções por Papillomavirus , Masculino , Feminino , Humanos , Infecções por Papillomavirus/complicações , Papillomavirus Humano , Proteínas do Capsídeo/genética , Papiloma/complicações , Pele
17.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34732583

RESUMO

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a novel furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation in cells. Here, we show that O-glycosylation near the furin cleavage site is mediated by members of the GALNT enzyme family, resulting in decreased furin cleavage and decreased syncytia formation. Moreover, we show that O-glycosylation is dependent on the novel proline at position 681 (P681). Mutations of P681 seen in the highly transmissible alpha and delta variants abrogate O-glycosylation, increase furin cleavage, and increase syncytia formation. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that host O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the role of the P681 mutations found in the highly transmissible alpha and delta variants.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Fusão Celular , Linhagem Celular , Furina/metabolismo , Células Gigantes , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
18.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876762

RESUMO

Guanylate-binding proteins (GBPs) form a family of dynamin-related large GTPases which mediate important innate immune functions. They were proposed to form oligomers upon GTP binding/hydrolysis, but the molecular mechanisms remain elusive. Here, we present crystal structures of C-terminally truncated human GBP5 (hGBP51-486), comprising the large GTPase (LG) and middle (MD) domains, in both its nucleotide-free monomeric and nucleotide-bound dimeric states, together with nucleotide-free full-length human GBP2. Upon GTP-loading, hGBP51-486 forms a closed face-to-face dimer. The MD of hGBP5 undergoes a drastic movement relative to its LG domain and forms extensive interactions with the LG domain and MD of the pairing molecule. Disrupting the MD interface (for hGBP5) or mutating the hinge region (for hGBP2/5) impairs their ability to inhibit HIV-1. Our results point to a GTP-induced dimerization mode that is likely conserved among all GBP members and provide insights into the molecular determinants of their antiviral function.


Assuntos
Proteínas de Ligação ao GTP/química , Multimerização Proteica , Sítios de Ligação , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
19.
J Immunoassay Immunochem ; 45(1): 20-37, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37807897

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disease that influences numerous body systems. Furin, tristetraprolin (TTP), and NOD, LRR, and pyrin domain-containing protein 3 (NLRP3) contribute in developing autoimmune illnesses. AIM: Understandthe role of furin, TTP, and NLRP3 mRNA gene expression in SLE pathogenesis and prognosis. Methods: Total 210 individuals were enrolled, divided in two group: cases and control; 105 participants in each group.  Real-time quantitative PCR for furin, TTP,and NLRP3 mRNA gene expression were determined for each subject. RESULTS: SLE patients showed significantly higher serum furin [median 20.10 (0.0-162.88) in comparison with control group [median 1.10 (0.33-8.64)] with significant pvalue (p < 0.001), for NLRP3 expression [median 7.03 (0.0-282.97) compared to control group [median 1.0 (0.44-9.48)] with significant p value (p = 0.006)but lower TTP [median 2.37 (0.0-30.13)] in comparison with control group [median 7.90 (1.0-29.29)] with significant p value (p < 0.001) . Elevated levels of Furin and NLRP3 and low levels of TTP were linked to increased illness activity. CONCLUSION: Furin and NLRP increase in SLE and higher with illness activity. TTP is lowerin SLE and negatively correlates with disease activity.


Assuntos
Lúpus Eritematoso Sistêmico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Furina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Biomarcadores
20.
Chem Biodivers ; : e202400717, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837886

RESUMO

Severe acute respiratory syndrome coronavirus 2 poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACEII), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against COVID-19, yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACEII, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method.  ACEII, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACEII, TMPRSS2, and Furin protein expression levels were significantly lower in dose dependent manner and the highest inhibition was seen at 100 ug/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease.  However, further studies need to be conducted in cells co-infected with the virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA