Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(2): 47, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302779

RESUMO

KEY MESSAGE: The first in-depth characterization of a subfamily III Snakin/GASA member was performed providing experimental evidence on promoter activity and subcellular localization and unveiling a role of potato Snakin-3 in defense Snakin/GASA proteins share 12 cysteines in conserved positions in the C-terminal region. Most of them were involved in different aspects of plant growth and development, while a small number of these peptides were reported to have antimicrobial activity or participate in abiotic stress tolerance. In potato, 18 Snakin/GASA genes were identified and classified into three groups based on phylogenetic analysis. Snakin-1 and Snakin-2 are members of subfamilies I and II, respectively, and were reported to be implicated not only in defense against pathogens but also in plant development. In this work, we present the first in-depth characterization of Snakin-3, a member of the subfamily III within the Snakin/GASA gene family of potato. Transient co-expression of Snakin-3 fused to the green fluorescent protein and organelle markers revealed that it is located in the endoplasmic reticulum. Furthermore, expression analyses via pSnakin-3::GUS transgenic plants showed GUS staining mainly in roots and vascular tissues of the stem. Moreover, GUS expression levels were increased after inoculation with Pseudomonas syringae pv. tabaci or Pectobacterium carotovorum subsp. carotovorum and also after auxin treatment mainly in roots and stems. To gain further insights into the function of Snakin-3 in planta, potato overexpressing lines were challenged against P. carotovorum subsp. carotovorum showing enhanced tolerance to this bacterial pathogen. In sum, here we report the first functional characterization of a Snakin/GASA gene from subfamily III in Solanaceae. Our findings provide experimental evidence on promoter activity and subcellular localization and reveal a role of potato Snakin-3 in plant defense.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Peptídeos/genética
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928379

RESUMO

Stylo (Stylosanthes spp.) is an important pasture legume with strong aluminum (Al) resistance. However, the molecular mechanisms underlying its Al tolerance remain fragmentary. Due to the incomplete genome sequence information of stylo, we first conducted full-length transcriptome sequencing for stylo root tips treated with and without Al and identified three Snakin/GASA genes, namely, SgSnakin1, SgSnakin2, and SgSnakin3. Through quantitative RT-PCR, we found that only SgSnakin1 was significantly upregulated by Al treatments in stylo root tips. Histochemical localization assays further verified the Al-enhanced expression of SgSnakin1 in stylo root tips. Subcellular localization in both tobacco and onion epidermis cells showed that SgSnakin1 localized to the cell wall. Overexpression of SgSnakin1 conferred Al tolerance in transgenic Arabidopsis, as reflected by higher relative root growth and cell vitality, as well as lower Al concentration in the roots of transgenic plants. Additionally, overexpression of SgSnakin1 increased the activities of SOD and POD and decreased the levels of O2·- and H2O2 in transgenic Arabidopsis in response to Al stress. These findings indicate that SgSnakin1 may function in Al resistance by enhancing the scavenging of reactive oxygen species through the regulation of antioxidant enzyme activities.


Assuntos
Alumínio , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Alumínio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Fabaceae/metabolismo , Fabaceae/genética , Fabaceae/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/efeitos dos fármacos
3.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542341

RESUMO

The diversity in the petal morphology of chrysanthemums makes this species an excellent model for investigating the regulation mechanisms of petal size. However, our understanding of the molecular regulation of petal growth in chrysanthemums remains limited. The GASA (gibberellic acid [GA]-stimulated Arabidopsis) protein plays a significant role in various aspects of plant growth and development. Previous studies have indicated that GEG (a gerbera homolog of the gibberellin-stimulated transcript 1 [GAST1] from tomato) is involved in regulating ray petal growth by inhibiting cell expansion in gerberas. In this study, we successfully cloned the GASA family gene from chrysanthemums, naming it CmGEG, which shares 81.4% homology with GEG. Our spatiotemporal expression analysis revealed that CmGEG is expressed in all tissues, with the highest expression levels observed in the ray florets, particularly during the later stages of development. Through transformation experiments, we demonstrated that CmGEG inhibits petal elongation in chrysanthemums. Further observations indicated that CmGEG restricts cell elongation in the top, middle, and basal regions of the petals. To investigate the relationship between CmGEG and GA in petal growth, we conducted a hormone treatment assay using detached chrysanthemum petals. Our results showed that GA promotes petal elongation while downregulating CmGEG expression. In conclusion, the constrained growth of chrysanthemum petals may be attributed to the inhibition of cell elongation by CmGEG, a process regulated by GA.


Assuntos
Proteínas de Arabidopsis , Asteraceae , Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Asteraceae/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
BMC Genomics ; 24(1): 668, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932701

RESUMO

BACKGROUND: The Gibberellic Acid-Stimulated Arabidopsis (GASA) gene family is widely involved in the regulation of plant growth, development, and stress response. However, information on the GASA gene family has not been reported in Chinese cabbage (Brassica rapa L. ssp. pekinensis). RESULTS: Here, we conducted genome-wide identification and analysis of the GASA genes in Chinese cabbage. In total, 15 GASA genes were identified in the Chinese cabbage genome, and the physicochemical property, subcellular location, and tertiary structure of the corresponding GASA proteins were elucidated. Phylogenetic analysis, conserved motif, and gene structure showed that the GASA proteins were divided into three well-conserved subfamilies. Synteny analysis proposed that the expansion of the GASA genes was influenced mainly by whole-genome duplication (WGD) and transposed duplication (TRD) and that duplication gene pairs were under negative selection. Cis-acting elements of the GASA promoters were involved in plant development, hormonal and stress responses. Expression profile analysis showed that the GASA genes were widely expressed in different tissues of Chinese cabbage, but their expression patterns appeared to diverse. The qRT-PCR analysis of nine GASA genes confirmed that they responded to salt stress, heat stress, and hormonal triggers. CONCLUSIONS: Overall, this study provides a theoretical basis for further exploring the important role of the GASA gene family in the functional genome of Chinese cabbage.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Arabidopsis/genética , Genoma de Planta , Filogenia , Perfilação da Expressão Gênica , Brassica/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
5.
BMC Plant Biol ; 23(1): 99, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36800929

RESUMO

BACKGROUND: The gibberellic acid-stimulated Arabidopsis (GASA) gene encodes a class of cysteine-rich functional proteins and is ubiquitous in plants. Most GASA proteins are influence the signal transmission of plant hormones and regulate plant growth and development, however, their function in Jatropha curcas is still unknown. RESULTS: In this study, we cloned JcGASA6, a member of the GASA family, from J. curcas. The JcGASA6 protein has a GASA-conserved domain and is located in the tonoplast. The three-dimensional structure of the JcGASA6 protein is highly consistent with the antibacterial protein Snakin-1. Additionally, the results of the yeast one-hybrid (Y1H) assay showed that JcGASA6 was activated by JcERF1, JcPYL9, and JcFLX. The results of the Y2H assay showed that both JcCNR8 and JcSIZ1 could interact with JcGASA6 in the nucleus. The expression of JcGASA6 increased continuously during male flower development, and the overexpression of JcGASA6 was associated with filament elongation of the stamens in tobacco. CONCLUSION: JcGASA6, a member of the GASA family in J. curcas, play an important role in growth regulation and floral development (especially in male flower). It is also involved in the signal transduction of hormones, such as ABA, ET, GA, BR, and SA. Also, JcGASA6 is a potential antimicrobial protein determined by its three-dimensional structure.


Assuntos
Jatropha , Proteínas de Plantas , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Jatropha/genética , Jatropha/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo
6.
Mol Biol Rep ; 50(10): 8683-8690, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37578577

RESUMO

Snakins of the Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family are short sequenced peptides consisting of three different regions: a C-terminal GASA domain, an N-terminal signal sequence and a variable region. The GASA domain is comprised of 12 conserved cysteine residues responsible for the structural stability of the peptide. Snakins are playing a variety of roles in response to various biotic stresses such as bacterial, fungal, and nematodes infections and abiotic stress like water scarcity, saline condition, and reactive oxygen species. These properties make snakins very effective biotechnological tools for possible therapeutic and agricultural applications. This review was attempted to highlight and summarize the antifungal and antibacterial potential of snakins, also emphasizing their sequence characteristics, distributions, expression patterns and biological activities. In addition, further details of transgene expression in various plant species for enhanced fungal and bacterial resistance is also discussed, with special emphasis on their potential applications in crop protection and combating plant pathogens.


Assuntos
Anti-Infecciosos , Arabidopsis , Proteínas de Plantas/genética , Resistência à Doença/genética , Plantas/genética , Anti-Infecciosos/farmacologia , Arabidopsis/genética , Peptídeos/metabolismo , Engenharia Genética , Regulação da Expressão Gênica de Plantas
7.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069439

RESUMO

Peanut (Arachis hypogaea L.) is a globally cultivated crop of significant economic and nutritional importance. The role of gibberellic-acid-stimulated Arabidopsis (GASA) family genes is well established in plant growth, development, and biotic and abiotic stress responses. However, there is a gap in understanding the function of GASA proteins in cultivated peanuts, particularly in response to abiotic stresses such as drought and salinity. Thus, we conducted comprehensive in silico analyses to identify and verify the existence of 40 GASA genes (termed AhGASA) in cultivated peanuts. Subsequently, we conducted biological experiments and performed expression analyses of selected AhGASA genes to elucidate their potential regulatory roles in response to drought and salinity. Phylogenetic analysis revealed that AhGASA genes could be categorized into four distinct subfamilies. Under normal growth conditions, selected AhGASA genes exhibited varying expressions in young peanut seedling leaves, stems, and roots tissues. Notably, our findings indicate that certain AhGASA genes were downregulated under drought stress but upregulated under salt stress. These results suggest that specific AhGASA genes are involved in the regulation of salt or drought stress. Further functional characterization of the upregulated genes under both drought and salt stress will be essential to confirm their regulatory roles in this context. Overall, our findings provide compelling evidence of the involvement of AhGASA genes in the mechanisms of stress tolerance in cultivated peanuts. This study enhances our understanding of the functions of AhGASA genes in response to abiotic stress and lays the groundwork for future investigations into the molecular characterization of AhGASA genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arachis/metabolismo , Filogenia , Proteínas de Arabidopsis/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163431

RESUMO

The gibberellic acid-stimulated Arabidopsis (GASA) gene family plays an important regulatory role in the growth and development of plants. In this study, we identified 19 GASA genes using bioinformatics-based methods in Populus trichocarpa, and these PtGASA genes could be divided into three categories based on their phylogenetic relationships. Based on an analysis of the structure and motifs of these genes, it was concluded that PtGASA class II members are more conserved than class I and class III members are, and the results of collinearity analysis showed that members of class II are collinearly related in poplar. Expression analysis of Populus trichocarpa roots, stems, and leaves showed that most of the PtGASA genes are expressed at higher levels in the stems or roots than in the leaves; a similar expression pattern was found in Vitis vinifera, indicating that the GASA-family members mainly play a role in the morphogenesis of poplar. Considering the phenomenon of gene amplification, we found that the higher the similarity of homologous genes was, the more similar the expression patterns. This study represents the first whole-genome identification and expression-profile analysis of the GASA-gene family in poplar, a model species, laying a foundation for functional studies of poplar GASA genes and serving as a reference for related research on other woody plant species.


Assuntos
Sequenciamento do Exoma/métodos , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Populus/crescimento & desenvolvimento , Sequência de Aminoácidos , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Família Multigênica , Filogenia , Proteínas de Plantas/química , Populus/genética , Conformação Proteica , Distribuição Tecidual
9.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142832

RESUMO

The Gibberellic Acid Stimulated Arabidopsis/Gibberellin Stimulated Transcript (GASA/GAST) gene family is a group of plant-specific genes encoding cysteine-rich peptides essential to plant growth, development, and stress responses. Although GASA family genes have been identified in various plant species, their functional roles in Prunus mume are still unknown. In this study, a total of 16 PmGASA genes were identified via a genome-wide scan in Prunus mume and were grouped into three major gene clades based on the phylogenetic tree. All PmGASA proteins possessed the conserved GASA domain, consisting of 12-cysteine residues, but varied slightly in protein physiochemical properties and motif composition. With evolutionary analysis, we observed that duplications and purifying selection are major forces driving PmGASA family gene evolution. By analyzing PmGASA promoters, we detected a number of hormonal-response related cis-elements and constructed a putative transcriptional regulatory network for PmGASAs. To further understand the functional role of PmGASA genes, we analyzed the expression patterns of PmGASAs across different organs and during various biological processes. The expression analysis revealed the functional implication of PmGASA gene members in gibberellic acid-, abscisic acid-, and auxin-signaling, and during the progression of floral bud break in P. mume. To summarize, these findings provide a comprehensive understanding of GASA family genes in P. mume and offer a theoretical basis for future research on the functional characterization of GASA genes in other woody perennials.


Assuntos
Arabidopsis , Prunus , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Prunus/metabolismo
10.
BMC Plant Biol ; 21(1): 448, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615467

RESUMO

BACKGROUND: Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 leads to reduced silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore the function of GhGASA10 in cotton fibers development. RESULTS: To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10-1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10-1 was localized in the cell membrane, which may synthesize and transport secreted proteins to the cell wall. Besides, GhGASA10-1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10-1 promotes cell elongation. Interestingly, GhGASA10-1 was upregulated by IAA at fiber elongation stages. CONCLUSION: We propose that GhGASA10-1 may promote fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation networks of GASA10-1 in cotton fiber development.


Assuntos
Proliferação de Células/genética , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Reguladores de Crescimento de Plantas/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibra de Algodão , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
11.
BMC Plant Biol ; 21(1): 565, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852791

RESUMO

The Gibberellic Acid Stimulated Arabidopsis (GASA) proteins were investigated in the study to help understand their possible roles in fruit trees, particularly in Citrus. A total of 18 CcGASA proteins were identified and characterized in Citrus clementina via a genome-wide approach. It was shown that the CcGASA proteins structurally shared a conserved GASA domain but varied considerably in primary sequences and motif compositions. Thus, they could be classified into three major phylogenetic groups, G1~G3, and two groups, G1 and G3 could be further classified into subgroups. The cis- elements on all CcGASA promoters were identified and categorized, and the associated transcription factors were predicted. In addition, the possible interactions between the CcGASA proteins and other proteins were predicted. All the clues suggested that these genes should be involved in defense against biotic and abiotic stresses and in growth and development. The notion was further supported by gene expression analysis that showed these genes were more or less responsive to the treatments of plant hormones (GA3, SA, ABA and IAA), and infections of citrus canker pathogen Xanthomonas citri. It was noted that both the segmental and the tandem duplications had played a role in the expansion of the CcGASA gene family in Citrus. Our results showed that the members of the CcGASA gene family should have structurally and functionally diverged to different degrees, and hence, the representative group members should be individually investigated to dissect their specific roles.


Assuntos
Citrus/metabolismo , Genoma de Planta , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Citrus/classificação , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Domínios Proteicos , RNA de Plantas , Xanthomonas
12.
J Exp Bot ; 72(13): 4708-4720, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33963401

RESUMO

Seed germination is regulated by multiple phytohormones, including gibberellins (GAs) and brassinosteroids (BRs); however, the molecular mechanism underlying GA and BR co-induced seed germination is not well elucidated. We demonstrated that BRs induce seed germination through promoting testa and endosperm rupture in Arabidopsis. BRs promote cell elongation, rather than cell division, at the hypocotyl-radicle transition region of the embryonic axis during endosperm rupture. Two key basic helix-loop-helix transcription factors in the BR signaling pathway, HBI1 and BEE2, are involved in the regulation of endosperm rupture. Expression of HBI1 and BEE2 was induced in response to BR and GA treatment. In addition, HBI1- or BEE2-overexpressing Arabidopsis plants are less sensitive to the BR biosynthesis inhibitor, brassinazole, and the GA biosynthesis inhibitor, paclobutrazol. HBI1 and BEE2 promote endosperm rupture and seed germination by directly regulating the GA-Stimulated Arabidopsis 6 (GASA6) gene. Expression of GASA6 was altered in Arabidopsis overexpressing HBI1, BEE2, or SRDX-repressor forms of the two transcription factors. In addition, HBI1 interacts with BEE2 to synergistically activate GASA6 expression. Our findings define a new role for GASA6 in GA and BR signaling and reveal a regulatory module that controls GA and BR co-induced seed germination in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas , Sementes/genética , Sementes/metabolismo
13.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830215

RESUMO

Gibberellic acid-stimulated Arabidopsis (GASA) proteins, as cysteine-rich peptides (CRPs), play roles in development and reproduction and biotic and abiotic stresses. Although the GASA gene family has been identified in plants, the knowledge about GASAs in Populus euphratica, the woody model plant for studying abiotic stress, remains limited. Here, we referenced the well-sequenced Populus trichocarpa genome, and identified the GASAs in the whole genome of P. euphratica and P. trichocarpa. 21 candidate genes in P. trichocarpa and 19 candidate genes in P. euphratica were identified and categorized into three subfamilies by phylogenetic analysis. Most GASAs with signal peptides were located extracellularly. The GASA genes in Populus have experienced multiple gene duplication events, especially in the subfamily A. The evolution of the subfamily A, with the largest number of members, can be attributed to whole-genome duplication (WGD) and tandem duplication (TD). Collinearity analysis showed that WGD genes played a leading role in the evolution of GASA genes subfamily B. The expression patterns of P. trichocarpa and P. euphratica were investigated using the PlantGenIE database and the real-time quantitative PCR (qRT-PCR), respectively. GASA genes in P. trichocarpa and P. euphratica were mainly expressed in young tissues and organs, and almost rarely expressed in mature leaves. GASA genes in P. euphratica leaves were also widely involved in hormone responses and drought stress responses. GUS activity assay showed that PeuGASA15 was widely present in various organs of the plant, especially in vascular bundles, and was induced by auxin and inhibited by mannitol dramatically. In summary, this present study provides a theoretical foundation for further research on the function of GASA genes in P. euphratica.


Assuntos
Genes de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Transcriptoma , Evolução Molecular , Espaço Extracelular/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Manitol/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Populus/classificação , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
14.
Plant Cell Rep ; 39(7): 839-849, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32529484

RESUMO

Snakin-1 (SN1) from potato is a cysteine-rich antimicrobial peptide with high evolutionary conservation. It has 63 amino acid residues, 12 of which are cysteines capable of forming six disulfide bonds. SN1 localizes in the plasma membrane, and it is present mainly in tissues associated with active growth and cell division. SN1 is active in vitro against bacteria, fungus, yeasts, and even animal/human pathogens. It was demonstrated that it also confers in vivo protection against commercially relevant pathogens in overexpressing potato, wheat, and lettuce plants. Although researchers have demonstrated SN1 can disrupt the membranes of E. coli, its integral antimicrobial mechanism remains unknown. It is likely that broad-spectrum antimicrobial activity is a combined outcome of membrane disruption and inhibition of intracellular functions. Besides, in potato, partial SN1 silencing affects cell division, leaf metabolism, and cell wall composition, thus revealing additional roles in growth and development. Its silencing also affects reactive oxygen species (ROS) and ROS scavenger levels. This finding indicates its participation in redox balance. Moreover, SN1 alters hormone levels, suggesting its involvement in the complex hormonal crosstalk. Altogether, SN1 has the potential to integrate development and defense signals directly and/or indirectly by modulating protein activity, modifying hormone balance and/or participating in redox regulation. Evidence supports a paramount role to SN1 in the mechanism underlying growth and immunity balance. Furthermore, SN1 may be a promising candidate in preservation, and pharmaceutical or agricultural biotechnology applications.


Assuntos
Anti-Infecciosos/metabolismo , Interações Hospedeiro-Patógeno , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Solanum tuberosum/genética , Estresse Fisiológico
15.
Plant Mol Biol ; 100(6): 607-620, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31123969

RESUMO

A vital role of short amino acid gene family, gibberellic acid stimulated arabidopsis (GASA), has been reported in plant growth and development. Although, little information is available about these cysteine rich short proteins in different plant species and this is the first comprehensive approach to exploit available genomic data and to analyze the GASA family in G. max. The phylogenetic and sequence composition analysis distributed the 37 identified GmGASA genes into three groups. Further investigation of the tissue expression pattern, phylogenetic analysis, motif, gene structure, chromosome distributions, duplication patterns, positive-selection pressure and cis-element analysis of 37 GmGASA genes. A conserved GASA domain was found in all identified GmGASA genes and exhibited similar characteristics. The online gene expression profile based analysis of GmGASA genes reveled that these genes were highly expressed in almost all soybean parts and some have high expression in flower which indicates that GmGASA genes displayed special or distinct expression pattern among different tissues. The segmental duplication was found in five pairs from 37 GmGASA genes and was distributed on 15 different chromosomes. The Ka/Ks ratio of 5 pairs of segmentally duplicated gene indicated that after the occurrence of duplication events, the duplicated gene pairs were purified and selected after restrictive functional differentiation. This investigated study of GmGASA gene will useful to support the statement about GASA genes role during flower induction in flowering plants.


Assuntos
Genoma de Planta , Giberelinas/metabolismo , Glycine max/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Cromossomos/ultraestrutura , Cromossomos de Plantas , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Filogenia , Regiões Promotoras Genéticas , Distribuição Tecidual
16.
Sensors (Basel) ; 18(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340418

RESUMO

A method for gas⁻solid two-phase flow pattern identification in horizontal pneumatic conveying pipelines is proposed based on an electrostatic sensor array (ESA) and artificial neural network (ANN). The ESA contains eight identical arc shaped electrodes. Numerical simulation is conducted to discuss the contributions of the electrostatic signals to the flow patterns according to the error recognition rate, and the results show that the amplitudes of the output signals from each electrode of the ESA can give important information on the particle distribution and further infer the flow patterns. In experiments, the average values and standard deviations of the eight output signals' amplitudes are respectively extracted as the inputs of the ANN to identify four kinds of flow patterns in a pneumatic conveying pipeline, which are fully suspended flow, stratified flow, dune flow and slug flow. Results show that for any one of those two input values, the correct rates of the ANN model are all 100%.

17.
Int J Mol Sci ; 19(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021961

RESUMO

Salvia miltiorrhiza (S. miltiorrhiza) is an important Chinese herb that is derived from the perennial plant of Lamiaceae, which has been used to treat neurasthenic insomnia and cardiovascular disease. We produced a mutant S. miltiorrhiza (MT), from breeding experiments, that possessed a large taproot, reduced lateral roots, and defective flowering. We performed transcriptome profiling of wild type (WT) and MT S. miltiorrhiza using second-generation Illumina sequencing to identify differentially expressed genes (DEGs) that could account for these phenotypical differences. Of the DEGs identified, we investigated the role of SmGASA4, the expression of which was down-regulated in MT plants. SmGASA4 was introduced into Arobidopsis and S. militiorrhiza under the control of a CaMV35S promoter to verify its influence on abiotic stress and S. miltiorrhiza secondary metabolism biosynthesis. SmGASA4 was found to promote flower and root development in Arobidopsis. SmGASA4 was also found to be positively regulated by Gibberellin (GA) and significantly enhanced plant resistance to salt, drought, and paclobutrazol (PBZ) stress. SmGASA4 also led to the up-regulation of the genes involved in salvianolic acid biosynthesis, but inhibited the expression of the genes involved in tanshinone biosynthesis. Taken together, our results reveal SmGASA4 as a promising candidate gene to promote S. miltiorrhiza development.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/crescimento & desenvolvimento , Salvia miltiorrhiza/genética , Análise por Conglomerados , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Anotação de Sequência Molecular , Fenótipo , Desenvolvimento Vegetal/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/fisiologia , Metabolismo Secundário/efeitos dos fármacos , Metabolismo Secundário/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Triazóis/farmacologia
18.
BMC Genomics ; 18(1): 827, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078754

RESUMO

BACKGROUND: The plant-specific gibberellic acid stimulated Arabidopsis (GASA) gene family is critical for plant development. However, little is known about these genes, particularly in fruit tree species. RESULTS: We identified 15 putative Arabidopsis thaliana GASA (AtGASA) and 26 apple GASA (MdGASA) genes. The identified genes were then characterized (e.g., chromosomal location, structure, and evolutionary relationships). All of the identified A. thaliana and apple GASA proteins included a conserved GASA domain and exhibited similar characteristics. Specifically, the MdGASA expression levels in various tissues and organs were analyzed based on an online gene expression profile and by qRT-PCR. These genes were more highly expressed in the leaves, buds, and fruits compared with the seeds, roots, and seedlings. MdGASA genes were also responsive to gibberellic acid (GA3) and abscisic acid treatments. Additionally, transcriptome sequencing results revealed seven potential flowering-related MdGASA genes. We analyzed the expression levels of these genes in response to flowering-related treatments (GA3, 6-benzylaminopurine, and sugar) and in apple varieties that differed in terms of flowering ('Nagafu No. 2' and 'Yanfu No. 6') during the flower induction period. These candidate MdGASA genes exhibited diverse expression patterns. The expression levels of six MdGASA genes were inhibited by GA3, while the expression of one gene was up-regulated. Additionally, there were expression-level differences induced by the 6-benzylaminopurine and sugar treatments during the flower induction stage, as well as in the different flowering varieties. CONCLUSION: This study represents the first comprehensive investigation of the A. thaliana and apple GASA gene families. Our data may provide useful clues for future studies and may support the hypotheses regarding the role of GASA proteins during the flower induction stage in fruit tree species.


Assuntos
Genes de Plantas , Genoma de Planta , Genômica , Malus/genética , Família Multigênica , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Evolução Molecular , Flores/genética , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Malus/classificação , Modelos Moleculares , Especificidade de Órgãos/genética , Fenótipo , Filogenia , Regiões Promotoras Genéticas , Conformação Proteica , Domínios Proteicos , Sequências Reguladoras de Ácido Nucleico , Relação Estrutura-Atividade , Açúcares/metabolismo
19.
BMC Biotechnol ; 17(1): 75, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121909

RESUMO

BACKGROUND: Snakin-1 (StSN1) is a broad-spectrum antimicrobial cysteine-rich peptide isolated from Solanum tuberosum. Its biotechnological potential has been already recognized since it exhibits in vivo antifungal and antibacterial activity. Most attempts to produce StSN1, or homologous peptides, in a soluble native state using bacterial, yeast or synthetic expression systems have presented production bottlenecks such as insolubility, misfolding or low yields. RESULTS: In this work, we successfully expressed a recombinant StSN1 (rSN1) in Spodoptera frugiperda (Sf9) insect cells by optimizing several of the parameters for its expression in the baculovirus expression system. The recombinant peptide lacking its putative signal peptide was soluble and was present in the nuclear fraction of infected Sf9 cells. An optimized purification procedure allowed the production of rSN1 that was used for immunization of mice, which gave rise to polyclonal antibodies that detect the native protein in tissue extracts of both agroinfiltrated plants and stable transgenic lines. Our results demonstrated that this system circumvents all the difficulties associated with recombinant antimicrobial peptides expression in other heterologous systems. CONCLUSIONS: The present study is the first report of a successful protocol to produce a soluble Snakin/GASA peptide in baculovirus-infected insect cells. Our work demonstrates that the nuclear localization of rSN1 in insect cells can be exploited for its large-scale production and subsequent generation of specific anti-rSN1 antibodies. We suggest the use of the baculovirus system for high-level expression of Snakin/GASA peptides, for biological assays, structural and functional analysis and antibody production, as an important step to both elucidate their accurate physiological role and to deepen the study of their biotechnological uses.


Assuntos
Anticorpos/metabolismo , Baculoviridae/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Núcleo Celular/química , Vetores Genéticos/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Células Sf9
20.
Environ Sci Pollut Res Int ; 31(22): 31752-31770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38656717

RESUMO

Worldwide, all countries have been facing the crisis of climate change problem. They have been addressing this issue by focusing on implementing green energy innovation initiatives and promoting a sustainable future through environmental sustainability. In this research study, we focus on examining the role of green finance through green energy innovations, which are taking place in several sectors across different regions to promote environmental sustainability. The study has analysed 152 articles on this research domain through a systematic literature review to understand the present state of existing knowledge. The current study examines the Scopus-indexed research articles from the time period 2002 to 2023. Six emerging themes have been examined to understand their development and the potential impact of green initiatives for environmental sustainability. Various institutional theories have been explored to understand their association with the investigated research area. The paper has discussed multiple challenges that need to be addressed for the speedy implementation of green innovations. Finally, future research questions have been proposed based on the findings from the extant literature and the existing research gaps.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação de Recursos Energéticos , Desenvolvimento Sustentável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA