Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(12): 2453-2485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719994

RESUMO

Double-strand breaks (DSBs) are the most lethal form of DNA damage. Transcriptional activity at DSBs, as well as transcriptional repression around DSBs, are both required for efficient DNA repair. The chromatin landscape defines and coordinates these two opposing events. However, how the open and condensed chromatin architecture is regulated remains unclear. Here, we show that the GATAD2B-NuRD complex associates with DSBs in a transcription- and DNA:RNA hybrid-dependent manner, to promote histone deacetylation and chromatin condensation. This activity establishes a spatio-temporal boundary between open and closed chromatin, which is necessary for the correct termination of DNA end resection. The lack of the GATAD2B-NuRD complex leads to chromatin hyperrelaxation and extended DNA end resection, resulting in homologous recombination (HR) repair failure. Our results suggest that the GATAD2B-NuRD complex is a key coordinator of the dynamic interplay between transcription and the chromatin landscape, underscoring its biological significance in the RNA-dependent DNA damage response.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Cromatina/metabolismo , Cromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , RNA/metabolismo , RNA/genética , Dano ao DNA , DNA/metabolismo , DNA/genética , Animais , Humanos , Transcrição Gênica , Reparo do DNA , Camundongos
2.
Funct Integr Genomics ; 24(2): 75, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600341

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 µM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.


Assuntos
Carcinoma Hepatocelular , Compostos Heterocíclicos com 3 Anéis , Neoplasias Hepáticas , Pironas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
3.
Genet Med ; 22(5): 878-888, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949314

RESUMO

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Criança , Feminino , Fatores de Transcrição GATA/genética , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Fenótipo , Gravidez , Proteínas Repressoras
4.
Am J Med Genet C Semin Med Genet ; 181(4): 548-556, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31737996

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is a major regulator of gene expression involved in pluripotency, lineage commitment, and corticogenesis. This important complex is composed of seven different proteins, with mutations in CHD3, CHD4, and GATAD2B being associated with neurodevelopmental disorders presenting with macrocephaly and intellectual disability similar to other overgrowth and intellectual disability (OGID) syndromes. Pathogenic variants in CHD3 and CHD4 primarily involve disruption of enzymatic function. GATAD2B variants include loss-of-function mutations that alter protein dosage and missense variants that involve either of two conserved domains (CR1 and CR2) known to interact with other NuRD proteins. In addition to macrocephaly and intellectual disability, CHD3 variants are associated with inguinal hernias and apraxia of speech; whereas CHD4 variants are associated with skeletal anomalies, deafness, and cardiac defects. GATAD2B-associated neurodevelopmental disorder (GAND) has phenotypic overlap with both of these disorders. Of note, structural models of NuRD indicate that CHD3 and CHD4 require direct contact with the GATAD2B-CR2 domain to interact with the rest of the complex. Therefore, the phenotypic overlaps of CHD3- and CHD4-related disorders with GAND are consistent with a loss in the ability of GATAD2B to recruit CHD3 or CHD4 to the complex. The shared features of these neurodevelopmental disorders may represent a new class of OGID syndrome: the NuRDopathies.


Assuntos
Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Síndrome
5.
Am J Med Genet A ; 173(7): 1821-1830, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28498556

RESUMO

Detailed neurobehavioural profiles are of major value for specific clinical management, but have remained underexposed in the population with intellectual disabilities (ID). This was traditionally classified based on IQ level only. Rapid advances in genetics enable etiology based stratification in the majority of patients, which reduces clinical heterogeneity. This paper illustrates that specific profiles can be obtained for rare syndromes with ID. Our main aim was to study (mal)adaptive functioning in Kleefstra Syndrome (KS) by comparing and contrasting our findings to three other subgroups: Koolen-de Vries Syndrome, GATAD2B-related syndrome, and a mixed control group of individuals with ID. In total, we studied 58 individuals (28 males, 30 females) with ID; 24 were diagnosed with KS, 13 with Koolen-de Vries Syndrome, 6 with the GATAD2B-related syndrome, and 15 individuals with undefined neurodevelopmental disorders. All individuals were examined with a Vineland Adaptive Behavior Scale, mini PAS-ADD interview, and an Autism Diagnostic Observation Schedule to obtain measures of adaptive and maladaptive functioning. Each of the three distinctive genetic disorders showed its own specific profile of adaptive and maladaptive functioning, while being contrasted mutually. However, when data of the subgroups altogether are contrasted to the data of KS, such differences could not be demonstrated. Based on our findings, specific management recommendations were discussed for each of the three syndromes. It is strongly suggested to consider the genetic origin in individuals with congenital neurodevelopmental disorders for individual based psychiatric and behavioral management.

6.
Am J Med Genet A ; 173(3): 766-770, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28211977

RESUMO

GATAD2B gene is involved in chromatin modification and transcription activity. Loss-of-function mutations of GATAD2B have recently been defined to cause a recognizable syndrome with intellectual disability (ID). Human TPM3 gene encoding thin filament protein is associated with myopathies. Both genes are located on chromosome 1q21.3. We herein report an infant with feeding difficulty, developmental delay, hypotonia, and dysmorphic features including small palpebral fissures, telecanthus, sparse hair and eyebrow, cup-shaped ears, and clinodactyly. Karyotype was normal. Single nucleotide polymorphism array revealed a 1.06 Mb deletion of chromosome 1q21.3, which was confirmed to be de novo. The deleted region encompassed 35 genes, including three known disease-associated genes, namely GATAD2B, TPM3, and HAX1. We further identify and summarize seven additional patients with 1q21.3 microdeletion from literature review and clinical databases (DECIPHER, ISCA/ClinGen). Genomic location analysis of all eight patients revealed different breakpoints and no segmental duplication, indicating that non-homologous end joining is a likely mechanism underlying this particular microdeletion. This data suggests that 1q21.3 microdeletion is a recurrent microdeletion syndrome with distinguishable phenotypes, and loss of function of GATAD2B is the major contributor of the characteristic facies and ID. Additionally, the deletion of TPM3 warrants a risk of concomitant muscle disease in our patient. © 2017 Wiley Periodicals, Inc.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 1 , Fatores de Transcrição GATA/genética , Fenótipo , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Fácies , Feminino , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Lactente , Proteínas Repressoras , Síndrome
7.
J Med Genet ; 50(8): 507-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23644463

RESUMO

BACKGROUND: GATA zinc finger domain containing 2B (GATAD2B) encodes a subunit of the MeCP1-Mi-2/nucleosome remodelling and deacetylase complex involved in chromatin modification and regulation of transcription. We recently identified two de novo loss-of-function mutations in GATAD2B by whole exome sequencing in two unrelated individuals with severe intellectual disability. METHODS: To identify additional individuals with GATAD2B aberrations, we searched for microdeletions overlapping with GATAD2B in inhouse and international databases, and performed targeted Sanger sequencing of the GATAD2B locus in a selected cohort of 80 individuals based on an overlap with the clinical features in the two index cases. To address whether GATAD2B is required directly in neurones for cognition and neuronal development, we investigated the role of Drosophila GATAD2B orthologue simjang (simj) in learning and synaptic connectivity. RESULTS: We identified a third individual with a 240 kb microdeletion encompassing GATAD2B and a fourth unrelated individual with GATAD2B loss-of-function mutation. Detailed clinical description showed that all four individuals with a GATAD2B aberration had a distinctive phenotype with childhood hypotonia, severe intellectual disability, limited speech, tubular shaped nose with broad nasal tip, short philtrum, sparse hair and strabismus. Neuronal knockdown of Drosophila GATAD2B orthologue, simj, resulted in impaired learning and altered synapse morphology. CONCLUSIONS: We hereby define a novel clinically recognisable intellectual disability syndrome caused by loss-of-function of GATAD2B. Our results in Drosophila suggest that GATAD2B is required directly in neurones for normal cognitive performance and synapse development.


Assuntos
Drosophila/genética , Fatores de Transcrição GATA/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Sinapses/metabolismo , Animais , Sequência de Bases , Criança , Deleção Cromossômica , Variações do Número de Cópias de DNA , Drosophila/metabolismo , Drosophila/ultraestrutura , Feminino , Humanos , Dados de Sequência Molecular , Neurônios/metabolismo , Proteínas Repressoras , Sinapses/genética , Síndrome
8.
Int J Clin Exp Pathol ; 16(9): 252-258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818386

RESUMO

Uterine sarcomas are a group of rare malignant tumors of mesenchymal tissue of the uterus, and their diagnosis is often difficult because they have variable morphologies and no typical immunophenotype. This report describes a 48-year-old woman who underwent laparoscopic myomectomy and relapsed within 5 years with a large mass in the pelvic cavity. Morphologically, the tumor was composed of oval cells and small arteries, and the cells showed moderate to severe atypia. Immunohistochemical results showed that the tumor cells expressed desmin, smooth muscle actin, and h-caldesmon, which supported myogenic differentiation. They were strongly positive for Cyclin D1, estrogen receptors (ER), and estrogen receptors (PR), supporting their origin from uterine mesenchymal cells. Next-generation sequencing (NGS) revealed a GATAD2B::MMRN1 rearrangement. The patient was diagnosed with uterine sarcoma resembling high-grade endometrial mesenchymal sarcoma with a GATAD2B-MMRN1 fusion. We review the relevant literature and discuss the diagnostic and differential diagnostic points for this disease.

9.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685361

RESUMO

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

10.
Eur J Med Genet ; 63(10): 104004, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32688057

RESUMO

De novo pathogenic variants in the GATAD2B gene have been associated with a syndromic neurodevelopmental disorder (GAND) characterized by severe intellectual disability (ID), impaired speech, childhood hypotonia, and dysmorphic features. Since its first description in 2013, nine patients have been reported in case reports and a series of 50 patients was recently published, which is consistent with the relative frequency of GATAD2B pathogenic variants in public databases. We report the detailed phenotype of 19 patients from various ethnic backgrounds with confirmed pathogenic GATAD2B variants including intragenic deletions. All individuals presented developmental delay with a median age of 2.5 years for independent walking and of 3 years for first spoken words. GATAD2B variant carriers showed very little subsequent speech progress, two patients over 30 years of age remaining non-verbal. ID was mostly moderate to severe, with one profound and one mild case, which shows a wider spectrum of disease severity than previously reported. We confirm macrocephaly as a major feature in GAND (53%). Most common dysmorphic features included broad forehead, deeply set eyes, hypertelorism, wide nasal base, and pointed chin. Conversely, prenatal abnormalities, non-cerebral malformations, epilepsy, and autistic behavior were uncommon. Other features included feeding difficulties, behavioral abnormalities, and unspecific abnormalities on brain MRI. Improving our knowledge of the clinical phenotype is essential for correct interpretation of the molecular results and accurate patient management.


Assuntos
Fatores de Transcrição GATA/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Pré-Escolar , Face/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Gravidez , Proteínas Repressoras , Deleção de Sequência , Distúrbios da Fala/genética
11.
Brain Dev ; 41(3): 276-279, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30482549

RESUMO

BACKGROUND: The human GATA zinc finger domain containing 2B (GATAD2B) encodes a subunit of the MeCP1-Mi-2/nucleosome remodeling and deacetylase complex, which is involved in chromatin modification and transcription. Recently, patients with severe intellectual disabilities and characteristic features associated with GATAD2B mutations have been identified. CASE REPORT: The patient was a 4-year-old male with dysmorphic features, including frontal bossing, hypertelorism, epicanthal folds, down-slanting palpebral fissures, a flat nasal bridge, a high arched palate, and micrognathia. He spoke no meaningful words and exhibited severe intellectual disability. Hypermetropic astigmatism and mild spasticity of the lower extremities were noted. Whole-exome sequencing revealed a de novo missense mutation in GATAD2B (NM_020699:exon4:c.502C>T; p.(Glu168∗)). CONCLUSION: We report a novel GATAD2B mutation in a boy exhibiting bilateral leg spasticity and white matter abnormalities on brain magnetic resonance imaging.


Assuntos
Deficiências do Desenvolvimento/genética , Fatores de Transcrição GATA/genética , Deficiência Intelectual/genética , Mutação/genética , Encéfalo/diagnóstico por imagem , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/diagnóstico por imagem , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Espasticidade Muscular/complicações , Espasticidade Muscular/genética , Proteínas Repressoras
12.
Mol Syndromol ; 10(4): 186-194, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31602190

RESUMO

Pathogenic variants of the GATAD2B gene (1q21.3) are linked to intellectual disability autosomal dominant type 18 (MRD18; MIM 615074), characterized by dysmorphic features, psychomotor and language delay. We present an 11-year-old female patient with intellectual disability and typical clinical characteristics of MRD18. Chromosomal microarray analysis (CMA) revealed a novel CNV, approximately 200 kb in size and showed that the INTS3 and SLC27A3 genes are completely deleted along with the first 10 exons of the GATAD2B gene. INTS3 encodes the integrator complex subunit 3 and is part of the complex that maintains genome stability; SLC27A3 encodes a fatty acid transporter and has been associated with autism spectrum disorder. GATAD2B haploinsufficiency is associated with the phenotype. Furthermore, the girl had other clinical characteristics not previously described, such as emotional instability, calf hypotrophy, hypoplastic digit pads, tapered thumbs, and anterior earlobe crease. This study highlights the importance of the phenotype-genotype correlation using molecular diagnostic techniques, such as CMA, and its impact on precise diagnosis, treatment, prognosis, and genetic counseling for patients and their families.

13.
Gene ; 535(1): 70-8, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24188901

RESUMO

Chromosomal microarray analysis is now commonly used in clinical practice to identify copy number variants (CNVs) in the human genome. We report our experience with the use of the 105 K and 180K oligonucleotide microarrays in 215 consecutive patients referred with either autism or autism spectrum disorders (ASD) or developmental delay/learning disability for genetic services at the University of Kansas Medical Center during the past 4 years (2009-2012). Of the 215 patients [140 males and 75 females (male/female ratio=1.87); 65 with ASD and 150 with learning disability], abnormal microarray results were seen in 45 individuals (21%) with a total of 49 CNVs. Of these findings, 32 represented a known diagnostic CNV contributing to the clinical presentation and 17 represented non-diagnostic CNVs (variants of unknown significance). Thirteen patients with ASD had a total of 14 CNVs, 6 CNVs recognized as diagnostic and 8 as non-diagnostic. The most common chromosome involved in the ASD group was chromosome 15. For those with a learning disability, 32 patients had a total of 35 CNVs. Twenty-six of the 35 CNVs were classified as a known diagnostic CNV, usually a deletion (n=20). Nine CNVs were classified as an unknown non-diagnostic CNV, usually a duplication (n=8). For the learning disability subgroup, chromosomes 2 and 22 were most involved. Thirteen out of 65 patients (20%) with ASD had a CNV compared with 32 out of 150 patients (21%) with a learning disability. The frequency of chromosomal microarray abnormalities compared by subject group or gender was not statistically different. A higher percentage of individuals with a learning disability had clinical findings of seizures, dysmorphic features and microcephaly, but not statistically significant. While both groups contained more males than females, a significantly higher percentage of males were present in the ASD group.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Aberrações Cromossômicas , Serviços em Genética , Deficiências da Aprendizagem/genética , Análise em Microsséries , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA